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Abstract. Direct time integration methods have been widely used in structural and solid dynamics simulations,
specially in nonlinear problems. Time-marching methods have been applied to discrete systems of differential
equations obtained from different spatial discretization techniques, like finite differences, finite volume, bound-
ary elements and finite elements, with finite elements being currently the most applied method for structural and
solid mechanics. On the other hand, space-time formulations consider time as a dimension of the finite element
discretization, so that the precision in time integration can be increased by using higher order shape functions
in time direction. In this context, this work presents a position-based total Lagrangian space-time finite element
formulation for the solution of two-dimensional elasticity problems with large displacements. By using structured
space-time mesh in time direction, it is possible to divide the space-time domain into space-time slabs, so that such
slabs can be solved progressively with the final nodal positions and velocities from previous slab being applied as
initial conditions to the current one. The adopted space-finite elements are prismatic with a triangular basis corre-
sponding to the spatial discretization and height corresponding to the temporal discretization, so that the space-time
shape functions are given by the product of the Lagrange polynomial shape functions adopted for the triangular
elements of spatial discretization, with Hermite polynomials based shape functions defined along the height of
the prism, for time discretization. The test functions in time direction are modified so that different stability and
precision can be achieved. Through the simulation of selected examples, and the comparison with solutions from
known time-marching methods, the robustness and stability of the proposed formulation is demonstrated.

Keywords: space-time formulation, positional-based formulation, stable high order time integration, time-marching
methods, large displacements

1 Introduction

Resonant systems, floating platforms, parachute systems, and blood valves are examples of structures or
structural systems that experience significant displacements during operation. Over the years, various formula-
tions of the finite element method (FEM) based on displacements have been developed to address these types of
problems [1–7]. The corotational approach [8–14], which describes finite element movement through nodal dis-
placements and rotations in a rotating frame of reference aligned with the element, has proven robust in addressing
geometric nonlinearity. Alternatively, Coda, inspired by Bonet et al., introduced and systematized the positional-
based formulation of FEM that consider the positions as unknowns, enabling balance equations to be defined in the
deformed state and seamlessly incorporating geometric nonlinearity. Hence, the formulation has a great potential
in scenarios involving large displacements, as can be seen in several works dealing with elastic material [17–28].

In dynamic problems, time-marching methods are often employed to solve the system of differential equations
resulting from spatial discretization. A classic implicit time-marching technique is the average acceleration method
- family member of Newmark’s method [29]. Its numerical characteristics have been investigated for both linear
[30] and nonlinear [31] regimes.

Conversely, the space-time formulation of FEM applies finite element techniques to both spatial and temporal
domains. The fully discretized problem involves a space-time mesh composed of interconnected elements linked
by nodes, each associated with space-time shape functions. Elements can be simplex, leading to an unstructured
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mesh suitable for adaptive techniques, or prismatic—resulting from the Cartesian product of spatial and temporal
finite elements—creating a structured mesh [32]. The structured space-time mesh approach shares similarities with
time-marching methods [33], as problem solutions can be sequenced and information propagates along the positive
time axis direction.

Within the framework of a structured space-time mesh, the Time FEM addresses temporal problems [34–41],
starting from the spatially discretized system. The key challenge lies in selecting temporal shape functions to
achieve stability and convergence throughout the solution. Notably, this approach permits stability analysis us-
ing one-degree-of-freedom systems. By using linear shape functions within a Discontinuous Galerkin framework,
Hulbert and Li and Wiberg obtained unconditionally stable algorithms. Other works utilized cubic Hermite poly-
nomials [35, 38, 41], introducing nodal velocities as degrees of freedom, yet offering the advantage of strongly
accounting for initial conditions. Fung introduced shape functions based on cubic Hermite polynomials to achieve
algorithms with unconditional stability and high convergence orders. One such algorithm attained fourth-order
convergence and unconditional stability, proving suitable for solid mechanics applications, where lower vibration
modes significantly influence most problems of interest.

A drawback of the space-time FEM is its greater computational cost compared to FEM with time-marching
methods. However, high temporal convergence orders can be achieved using temporal shape functions, allowing
for larger time steps with sufficient precision. In light of this, our work aims to present a space-time formulation of
the finite element method. Constructed within a structured mesh framework employing a total Lagrangian descrip-
tion, this formulation utilizes position-based spatial discretization and implements the fourth-order unconditionally
stable integrator suggested by Fung for temporal solutions. Our study will juxtapose these outcomes against those
derived from Newmark’s method in conjunction with position-based FEM, along with existing findings in the
literature.

2 Space-time formulation

2.1 Problem statement

Let be the space-time domain Q = Ω× [0, T ], where Ω ⊂ Rnd is a closed boundary domain with boundary
Γ, where nd ≤ 3 is the number of spatial dimensions and T the final time. The boundary is Γ = ΓD ∪ ΓN , so
that ΓD ∩ΓN = ∅, being ΓD and ΓN the Dirichlet and Neumann boundaries, respectively. On the other hand, the
space-time boundary is given by R = Γ× [0, T ], so that R = RD ∪RN , being RD ∩RN = ∅, with RD and RN

called space-time Dirichlet and Neumann boundaries, respectively. Considering the total Lagrangian description,
the initial configuration Ω0, with boundary Γ0 and points x ∈ Ω0, is projected (extruded) along the time axis in
order to obtain the reference domain Q̄ = Ω0× [0, T ] with boundary R̄ = Γ0× [0, T ], which serves as an auxiliary
domain for calculating the strains at each time. Given these considerations, the momentum balance equation is
written as:

∇x ·P + b0 = ρ0ÿ in Q̄, (1)

where y ∈ Ω is the position of an observed particle at the current time, and therefore ÿ is its acceleration, obtained
from the material derivative of its velocity ẏ = ∂y/∂t, ρ0(x) is the initial density, b0 is the vector of domain forces
acting on the initial configuration, the ∇x(•) symbol representing the gradient of (•) with respect to the initial
coordinates x, and P = σT · F−T is the first Piola-Kirchhoff stress tensor, being F = ∂y/∂x the deformation
gradient and J = det F.

A more appropriate stress tensor in mathematical developments is the second Piola-Kirchhoff stress tensor,
given by S = F−1 · P. By assuming the isotropic linear elasticity, with small to moderate deformations, S is
related to the Green-Lagrange deformation tensor E = 1

2 (FTF− I), where I is the second-order identity tensor of
dimension nd × nd, through the constitutive law of Saint-Venant-Kirchhoff, given by: S = 2E + λtr(E)I, where
µ = E/[2(1 + ν)] and λ = νE/(1 + ν)/(1− 2ν) the Lammé constants.

The complete definition of the problem is achieved when considering the boundary and initial conditions,
given by:

y(x, t) = ȳ(x, t) on R̄D (2)
P · n0 = t0(x, t) on R̄N (3)
y(x, 0) = y0(x) in Ω0 (4)
ẏ(x, 0) = v0(x) in Ω0, (5)

where ȳ(x, t) is the current positions prescribed in R̄D, t0 the vector of surface forces applied at R̄N = ΓN
0 ×[0, T ]

with n0 being the outward normal vector to ΓN
0 , and y0(x) and v0 the initial positions and velocities, respectively.
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2.2 Space-time discretization

Let Q̄h with boundary R̄h be the approximate reference domain. This is divided into space-time slabs, defined
as Q̄h

n = Ωh
0 × Ihn with boundary R̄h = Γh

0 × Ihn . It can be established that Q̄ ≈ Q̄h =
⋃N−1

n=0 Q̄
h
n, with Q̄h

n =⋃nne

e=1 Q̄
e and R̄ ≈ R̄h =

⋃N−1
n=0 R̄

b
n, with R̄h

n =
⋃neb

b=1 R̄
b, where Q̄e

n are the space-time elements. Assuming
structured meshes, the reference space-time slab is the product of the spatial mesh of the solid in its initial config-
uration and the time step (height of the current slab). Therefore, it is noted that it is more convenient to represent
a space-time finite element by means of the Cartesian product between a spatial element Ωe

0 and a temporal ele-
ment In = [tn, tn+1], where tn and tn+1 is the initial and current time (or nodes) of a temporal element of size
∆t = tn+1 − tn, so that Q̄e

n = Ωe
0 × In.

Position-based spatial discretization

In the context of spatial elements Ωe
0, each node a is associated with a Lagrangian shape function φa(ξ).

Here, ξ represents a dimensionless coordinate system unique to each finite element. These shape functions serve
as the foundation for expressing both the initial configuration Ωe

0 and the current configuration Ωe in the following
manner:

xh(ξ) = f0(ξ) = φa(ξ)xa, (6)
yh(ξ, t) = f1(ξ, t) = φa(ξ)ya(t). (7)

In these equations, xa and ya correspond to vectors with dimensions nd ≤ 3, containing the initial and current
coordinates of the node a, respectively. Through the composition of mappings f0 and f1, the overall deformation
function of the element can be expressed as fh(x, t) = f1(ξ, t)◦(f0(ξ))−1. This leads to the element’s deformation
gradient Fh = F1 · (F0)−1, where F0 = ∂f0/∂ξ and F1 = ∂f1/∂ξ denote the gradients of the initial and current
mappings respectively.

Temporal discretization based on Hermite cubic polynomials

Similarly, a temporal finite element consists of two nodes, each featuring two degrees of freedom - position
and velocity. Corresponding to each degree of freedom b, there is an associated temporal shape function denoted
as ψb. Consequently, the temporal finite element is composed of four shape functions, based on Hermite cubic
polynomials, which are as follows:

ψ1(θ) =
1

4
(1− θ)2(2 + θ), (8)

ψ2(θ) =
∆t

8
(1 + θ)(1− θ)2, (9)

ψ3(θ) =
1

4
(1 + θ)2(2− θ), (10)

ψ4(θ) = −∆t

8
(1 + θ)2(1− θ), (11)

where θ ∈ [−1, 1] is the dimensionless local coordinate. Considering that time is interpolated by t = (θ+1)∆t/2+
tn, the behavior of the position degree of freedom of a node a (ya(t) in the equation(7)) in the interior of a finite
temporal element is interpolated as:

ya(θ) = ψ1(θ)yn
a + ψ2(θ)vn

a + ψ3(θ)yn+1
a + ψ4(θ)vn+1

a , (12)

from where it is important to note that yn+1
a and vn+1

a signify the unknowns in the given problem.

2.3 Numerical solution via weighted residual method

Regarding the n-th reference slab Q̄h
n, we establish finite-dimensional spaces: Yh for the trial function

yh(x, t) and Wh for test functions wh(x, t). These spaces comprise suitably differentiable functions to effec-
tively approximate the mentioned functions. In Yh, functions satisfy yh = ȳ over (R̄D

n )h, while inWh, functions
and their derivatives are homogenous at tn, i.e., wh(x, tn) = 0 and ẇh(x, tn) = 0.

The test function is defined as:

wh(ξ, θ) = φa(ξ)wa(θ), (13)
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where

wa(θ) = ψw
1 (θ)(wa)n1 + ψw

2 (θ)(wa)n2 + ψw
3 (θ)(wa)n+1

3 + ψw
4 (θ)(wa)n+1

4 , (14)

and ψw
b , with b = 1, 2, 3, 4, the shape functions of the test function.
By employing the weighted residuals method, the discrete initial-boundary value problem can be expressed

as follows: finding yh ∈ Yh, so that ∀ wh ∈ Wh:∫
Q̄n

(ρ0ÿ
h −∇x ·Ph − bh

0 ) ·wh dQ̄n =

∫ tn+1

tn

∫
Ω0

(ρ0ÿ
h −∇x · (Fh · Sh)− bh

0 ) ·wh dΩ0 dt = 0, (15)

In this equation, it’s evident that the domain of integration in the first integral is localized within a reference
space-time slab, while in the second integral, the independence of spatial and temporal integrations is evident.
This formulation exhibits resemblance to time-marching methods. Notably, it can handle distinct and independent
discretizations (structured meshes) for space and time. The solution is achieved sequentially, where the final
conditions of a slab become the initial conditions of the subsequent one.

Expanding equation (15) and eliminating a set of nodal parameters from the test function yields a determinate
system of equations (two equations and two unknowns). Interestingly, by adopting ψw

b = ψb (i.e., using the same
temporal shape functions for both test and trial functions), six conditionally stable integrators similar to those
derived by Mergel et al. emerge. Among them, a fourth-order convergent integrator named p2 stands out. On the
other hand, Fung introduce two shape functions that can be incorporated into the 2x2 system of equations, leading
to an unconditionally stable fourth-order time integrator. By discarding (wa)n1 and (wa)n2 , and simplifying while
retaining the arbitrariness of the remaining two parameters, (15) can be expressed as:

∫ tn+1

tn

(f inerca + f inta + fexta )

ψw
3

ψw
4

 dt = 0, (16)

where:

f inera =

∫
Ωh

0

mabÿb dΩh
0 , (17)

f inta =

∫
Ωh

0

Fh · Sh · ∂φa
∂x

dΩh
0 , (18)

fexta = −
∫

ΓN h
0

φat
h
0 dΓN h

0 −
∫

Ωh
0

φab
h
0 dΩh

0 , (19)

are the inertial, internal and external nodal forces, respectively, and mab =
∫

Ωh
0
ρ0φaφb dΩh

0 a scalar quantity of
mass. The shape functions ψw

3 and ψw
4 of the equation (16), taken from work of Fung, are given by:

ψw
3 (θ) = −140θ̄3 + 210θ̄2 − 90θ̄ + 11, (20)
ψw

4 (θ) = 280θ̄3 − 420θ̄2 + 180θ̄ − 20, (21)

where θ̄ = (θ + 1)/2.

3 Numerical examples

The subsequent numerical examples were simulated using Lagrange triangular elements. To solve the system
of equations (16), the Newton-Raphson method was employed, with a predefined tolerance of 10−6. Spatial
integration was executed using Hammer quadrature points, while numerical integration in the temporal domain
was carried out using Gaussian quadrature points

3.1 Bar under axial vibration

To validate the proposed formulation, we examined a simple wave problem involving a bar. The bar has
dimensions of length 1.0 and height 0.05, subjected to a plane stress state with unit width. The left end is fixed, and
a sudden axial load of intensity 1.0 per unit length is applied along the right vertical face. We used dimensionless
quantities. The material is characterized by an elastic modulus of E = 1.0 × 104, Poisson’s ratio ν = 0.0, and

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



Darcy Hannah Falcão Rangel Moreira , Weslley Camargo Lopes, Rodolfo André Kuche Sanches

initial density ρ0 = 1.0. The bar starts from rest, implying initial positions and velocities of zero. The analytical
solution (see [43]) predicts a maximum amplitude of twice the static response (ust1 = 1.0 × 10−4), resulting in
umax

1 = 2.0× 10−4, and a natural period of Tn = 0.04.
Numerical simulations were conducted using both the proposed space-time formulation and Newmark’s

method with optimal parameters. The spatial mesh comprised 40 quadratic elements, and two different time steps
were used: ∆t = 10−4 and ∆t = 10−3. Figure 1 illustrates the solutions for the horizontal displacement at the
right end of the bar. The results indicate that the numerical solution for ∆t = 10−4 is in close agreement with the
analytical solution. However, for a larger time step (∆t = 10−3), damping occurs in the solution over time, more
pronounced in Newmark’s method. This observation underscores the superior temporal precision of the proposed
space-time formulation compared to Newmark’s method.
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Figure 1. Horizontal displacement at the free end of the bar using two different time steps.

3.2 Cantilever beam under uniformly distributed load

We proceed to analyze a cantilevered beam subjected to a suddenly applied, uniformly distributed load of
2.85 lb/in along its length. The study aims to compare our results with those by Bathe et al.. The beam, featuring
large displacements, is treated under a plane stress state with unit width. The elastic material adheres to the Saint-
Venant-Kirchhoff law, with modulus of elasticity E = 1.2× 104 lb/in², Poisson’s ratio ν = 0.2, and initial density
ρ0 = 10−6 lb·s²/in4. The beam dimensions are 10 in length and 1 in height. In the simulations by Bathe et al.,
five quadrangular elements with 8 nodes were used, employing Newmark’s method with β = 1/4, γ = 1/2, and
∆t = 4.5× 10−5 s.

In our analysis, we employed a spatial mesh of 146 quadratic elements, adopting time steps of ∆t =
4.5 × 10−5 s (matching the reference) and ∆t = 4.5 × 10−4 s (10 times larger). Figure 2 presents the numerical
results, showcasing the transversal displacement at the free end of the cantilever beam using the space-time formu-
lation and Newmark’s method with optimal parameters, alongside the outcomes of Bathe et al.. A good agreement
is observed among all responses during the first oscillation period. For the second period, the space-time formula-
tion with ∆t = 4.5× 10−4 exhibits a slight amplification in the response, while Newmark’s method introduces an
elongation in the oscillation period. From this, the space-time formulation presents superior accuracy than New-
mark’s method. Additionally, our solution is slightly flexible than Bathe et al.’s, possibly due to the difference in
the number of elements used.

4 Conclusion

In this work, we introduced a position-based total Lagrangian space-time finite element formulation to tackle
two-dimensional elasticity problems featuring large displacements. The formulation demonstrates its suitability
for problems with large displacements, leveraging the inherent non-linearity of position-based FEM. Furthermore,
we observed the higher numerical accuracy of the Fung formulation compared to Newmark’s method, with the
former being fourth-order and the latter second-order. The presented method proved stable and highly accurate
even with larger time steps. In future research, we recommend exploring the computational performance of the
proposed formulation against time-marching methods.
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Figure 2. Transversal displacement at the free end of the cantilever beam using two different time steps.
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