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Abstract. This paper addresses the use of a locally-defined time-marching methodology for the dynamic analysis 
of frame structures. The discussed formulation allows specifying time integration parameters at an element level, 
enabling intended numerical features, such as numerical damping, to be locally applied, providing a much more 
versatile approach. Additionally, these locally-defined time integration parameters may also be established 
following the inherent properties of each element of the discretized model, allowing optimized definitions to be 
carried out and enhanced accuracy to be provided. The presented technique is unconditionally stable, second-order 
accurate, and truly self-starting, and it allows adaptive controllable algorithm dissipation. At the end of the 
manuscript, numerical examples are presented, illustrating the effectiveness of the discussed methodology. 
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1  Introduction 

Numerical methods serve as fundamental tools for solving intricate problems encountered in various scientific and 
engineering domains. Specifically, in structural dynamics, numerical methods are employed to ascertain the 
stresses, strains, and displacements experienced by a system when subjected to arbitrary loads or initial conditions. 
In this context, the finite element method [1] is frequently utilized for spatial discretization, while the dynamic 
response can be obtained using two typical standard approaches. The first approach involves the utilization of the 
mode superposition method, whereby the final response is determined as the summation of the respective vibration 
modes. The second approach, known as direct integration, avoids any transformation of equations into an alternate 
form, thereby enabling the direct computation of the response through time-marching or step-by-step methods. 
The scientific literature encompasses numerous classical implicit [2-5] and explicit [6-9] methods for structural 
dynamics analysis, and a comprehensive review of these methods can be found in [10-13]. 

For problems in structural dynamics, the inclusion of numerical damping in time-marching techniques becomes 
crucial due to the presence of spurious high-frequency modes introduced by spatial discretization. Controllable 
dissipation methods are necessary to suppress the contribution of these high-frequency modes while preserving 
the accuracy of low-frequency modes, which are responsible for generating the correct solution response. In this 
context, several methods have been proposed to introduce numerical dissipation and eliminate spurious high 
frequencies. The classical Newmark method [2] is widely employed and accepted in both practical engineering 
and scientific communities. However, when numerical damping is applied, the Newmark method is only first-
order accurate. 

Based on the framework established by Soares [14, 15], this study discusses a locally defined implicit time 
integration procedure. In this method, users have the flexibility to selectively apply numerical dissipation to 
specific elements. To achieve this, an additional property, referred to as the numerical dissipation parameter 
(denoted as 𝑎௘), is assigned to each element of the spatial discretization, akin to the provision of physical 
properties. This approach enables the inclusion of controllable, locally-defined numerical dissipation in the 
analyses. 

The utilization of adaptively defined time-marching procedures, both on a global scale [14, 16] and on a local scale 
[15, 17, 18], is not novel within the field of structural dynamics, wave propagation analyses, and other transient 
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applications [19]. However, this study presents a novel methodology where the user has the ability to locally define 
the properties of the time solution procedure in a manner analogous to defining the standard properties of the 
spatially discretized elements within the model, as well as to separately consider the axial and the transverse 
behavior of the frame element when defining these properties. Consequently, the user can selectively specify the 
elements in which numerical damping should be considered, along with its desired intensity. Subsequently, the 
technique is adaptively developed based on these user-defined specifications. 

2  Governing equations and time marching procedure 

The dynamic model is defined by the following governing system of equations, as presented in [20]: 

 𝑴𝑼̈(𝑡) + 𝑪𝑼̇ (𝑡) + 𝑲𝑼(𝑡) = 𝑭(𝑡), (1) 

where 𝑭(𝑡) represents the load vector; 𝑴, 𝑪, and 𝑲 represent the mass, damping, and stiffness matrices, 
respectively; and 𝑼(𝑡), 𝑼̇(𝑡), and 𝑼̈(𝑡) denote the displacement, velocity, and acceleration vectors, 
respectively. The initial conditions of the model are given by 𝑼଴ = 𝑼(0) and 𝑼̇଴ = 𝑼̇(0), where 𝑼଴ and 𝑼̇଴ 
represent the initial displacement and initial velocity vectors, respectively. 

By considering a constant time-step Δ𝑡 (i.e., 𝑡௡ାଵ =  𝑡௡ + ∆𝑡) and integrating Eq. (1) over time, at the 
element level (denoted by subscript 𝑒), we can express this equation as follows: 

 𝑴௘ ∫ 𝑼̈𝒆(𝑡)𝑑𝑡
௧೙శభ

௧೙ + 𝑪௘ ∫ 𝑼̇𝒆 (𝑡)𝑑𝑡
௧೙శభ

௧೙ + 𝑲௘ ∫ 𝑼𝒆 (𝑡)𝑑𝑡
௧೙శభ

௧೙ = ∫ 𝑭𝒆 (𝑡)𝑑𝑡
௧೙శభ

௧೙ . (2) 

The integrals on the left-hand side of Eq. (2) can be computed as [14]: 

 ∫ 𝑼̈𝒆(𝑡)𝑑𝑡
௧೙శభ

௧೙ = 𝑼̇𝒆
௡ାଵ − 𝑼̇𝒆

௡, (3a) 

 ∫ 𝑼̇𝒆 (𝑡)𝑑𝑡
௧೙శభ

௧೙ = 𝑼𝒆
௡ାଵ − 𝑼𝒆

௡ , (3b) 

 ∫ 𝑼𝒆 (𝑡)𝑑𝑡
௧೙శభ

௧೙ = ∆𝑡𝑼𝒆
𝒏 +

ଵ

ଶ
𝛼௘∆𝑡ଶ𝑼̇𝒆

𝒏 +
ଵ

ଶ
𝛾௘∆𝑡ଶ𝑼̇𝒆

𝒏ା𝟏, (3c) 

where 𝛼௘  and 𝛾௘  are the parameters of the method, calculated for each element, and the superscripts 𝑛 and 
𝑛+1 denote the previous and the current time steps, respectively. The displacement 𝑈௡ାଵ can be defined as 
follows: 

 𝑼௡ାଵ = 𝑼௡ +
ଵ

ଶ
∆𝑡(𝑼̇௡ + 𝑼̇𝒏ାଵ). (4) 

Given equations (3) and (4), equation (2) can be redefined as a straightforward recursive relationship: 

 𝑬ଵ௘𝑼̇𝒆
௡ାଵ = ∫ 𝑭𝒆(𝑡)𝑑𝑡

௧೙శభ

௧೙ + 𝑬ଶ௘𝑼̇𝒆
௡ − ∆𝑡𝑲𝒆𝑼𝒆

௡ . (5) 

where: 

 𝑬ଵ௘ = ൬𝑴௘ +
ଵ

ଶ
∆𝑡𝑪௘ +

𝟏

𝟐
∆𝑡ଶ(𝛾௘𝑲௘)൰ (6a) 

 𝑬ଶ௘ = ൬𝑴௘ −
ଵ

ଶ
∆𝑡𝑪௘ −

ଵ

ଶ
∆𝑡ଶ(𝛼௘𝑲௘)൰ (6b) 

Therefore, once the assembly process is completed, velocities can be calculated according to Eq. (5), and, 
subsequently, displacements can be evaluated using Eq. (4). The proposed technique is truly self-starting, 
relying only on displacement-velocity relationships, eliminating the need for acceleration calculations and 
initial condition procedures. 

In the proposed methodology, for each element, two maximum natural frequencies are calculated (i.e., 
𝜔௘௧

௠௔௫  𝑎𝑛𝑑 𝜔௘௕
௠௔௫), and parameters 𝛾௘  and 𝛼௘  are computed as function of theses natural frequencies. 

Therefore, there will be two sets of 𝛾௘  and 𝛼௘  parameters per element. The values of 𝛾௘  and 𝛼௘  should be 
multiplied by their respective corresponding terms in the element stiffness matrix, according to Eqs. (6a-
b). 



Antonio Carlos Luna Lins Cavalcanti, Delfim Soares Jr, Webe João Mansur 

CILAMCE-2023 
Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  

Porto – Portugal, 13-16 November, 2023 
 

The integration parameters 𝛼௘  and 𝛾௘  are locally determined and computed based on the element 
properties, the time-step Δ𝑡, the value of the numerical dissipative property 𝑎𝑒, and the maximum natural 
frequency 𝜔௘

௠௔௫(which may be defined by 𝜔௘௧
௠௔௫𝑜𝑟 𝜔௘௕

௠௔௫). The methodology allows the user to selectively 
activate numerical dissipation in specific structural elements, thus, wherever numerical dissipation is 
desired, 𝑎௘  > 0 is adopted; otherwise, 𝑎௘  = 0 is assigned. When 𝑎௘= 0, the following definitions for the time 
integration parameters are considered: 

 𝛾௘ =
ଵ

ଶ
𝑡𝑎𝑛ℎ ቀ

ଵ

ସ
𝜔௘

௠௔௫∆𝑡ቁ, (7a) 

 𝛼௘ = 1 − 𝛾௘ . (7b) 

Otherwise, if 𝑎௘  > 0, 𝛾௘  and 𝛼௘  are defined as follows: 

 𝛾௘ =
ଵ

ଶ
+

ଷ

ଶ
𝑡𝑎𝑛ℎ(𝑎௘𝜔௘

௠௔௫∆𝑡), (8a) 

 𝛼௘ = 2(2𝛾௘)
భ

మ − 𝛾௘ − 1, (8b) 

where 𝜔௘௧
௠௔௫  and 𝜔௘௕

௠௔௫  represent the maximum natural frequencies for the truss (𝑲௘௧ ⊂ 𝑲௘  and 𝑴௘௧ ⊂ 𝑴௘) 
and beam (𝑲௘௕ ⊂ 𝑲௘  and 𝑴௘௕ ⊂ 𝑴௘) elements, respectively, calculated as the square root of the largest 
eigenvalues obtained from the generalized eigenvalue problems 

 𝑲௘௧∅ = (𝜔௘௧
௠௔௫)²𝑴௘௧∅, (9a) 

 𝑲௘௕∅ = (𝜔௘௕
௠௔௫)ଶ𝑴௘௕∅. (9b) 

The basic steps of the discussed solution procedure are presented in Table 1.  

Table 1. Solution algorithm 

1. Initialize 𝑼଴ and 𝑼̇଴, and select a time step ∆t for the analysis; 

2. For each element of the model: 

2.1. Input the numerical damping property 𝑎௘; 

2.2. Compute 𝑲௘  (defined by 𝑲௘௧ ∪ 𝑲௘௕), 𝑴௘  (defined by 𝑴௘௧ ∪ 𝑴௘௕), and 𝑪௘ , at local coordinates; 

2.3. Compute the max. natural frequencies 𝜔௘௧
௠௔௫and 𝜔௘௕

௠௔௫ : Eqs. (9a-b); 

2.4. Compute 𝛾௘  and 𝛼௘  for each max. natural frequency: if (𝑎௘= 0): Eqs. (7a-b); otherwise: Eqs. (8a-b) 

2.5. Establish 𝛾௘𝑲௘ as (𝛾௘௧𝑲௘௧)∪(𝛾௘௕𝑲௘௕) and 𝛼௘𝑲௘  as (𝛼௘௧𝑲௘௧) ∪ (𝛼௘௕𝑲௘௕); 

2.6. Establish the local matrices at global coordinates; 

2.7. Compute the auxiliary matrices 𝑬ଵ௘  and 𝑬ଶ௘: Eqs. (6a-b), and assemble them (as well as 𝑲௘); 

3. Compute 𝑬𝟏 = 𝑳𝑫𝑳𝑻; 

4. For each time step: 

4.1. Compute R =∫ 𝑭 (𝑡)𝒅𝑡
௧೙శభ

௧೙  (as, for instance, R = 
ଵ

ଶ
∆𝑡(𝑭௡ + 𝑭௡ାଵ); 

4.2. Compute the velocity vector: 𝑳𝑫𝑳𝑻𝑼̇௡ାଵ = 𝑹 + 𝑬𝟐𝑼̇𝒏 − Δ𝑡𝑲𝑼௡; 

4.3. Compute the displacement vector: Eq. (4); 
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3  Numerical Application 

In this section, a numerical example is discussed to illustrate the performance of the reported method. We 
used the MATLAB programming language (version R2018a) to perform the computational simulations. A 
heterogeneous rod, subjected to an axial force, is considered, and the computed results are compared with 
those provided by the Newmark [2] and Bathe [5] methods. A sketch of the model is presented in Figure 1. 
As illustrated in this figure, the rod is fixed at its left border (Point A) and subjected to a prescribed axial 
traction acting on its right border (Point C), which is defined by: 

 𝑃(𝑡) = 𝐹଴ 𝑠𝑖𝑛 ቀ
గ௧

்
ቁ [𝐻(𝑡) − 𝐻(𝑡 − 𝑇)], (10) 

where 𝐹଴=1x10ଷ[𝑁] and T = 0.01 [𝑠] describe the amplitude and the duration of the applied traction, 
respectively, and 𝐻(. ) stands for the Heaviside function. The length of the rod is defined by 𝐿 = 1.0 [𝑚], and 
two equal-sized subdomains compose the referred heterogeneous model, as shown in Fig.1. In this case, the 
left subdomain of the rod (subdomain AB) is characterized by a material with a p-wave propagation velocity 
defined by 𝑐஺஻  = 10 [m/s], and different materials are utilized to characterize the right subdomain of the 
model (subdomain BC). Thus, in this example, the following values are considered for the p-wave 
propagation velocity of subdomain BC: (i) 𝑐஻஼  = 10 [m/s] (model 1, homogeneous rod), (ii) 𝑐஻஼  = 20 [m/s] 
(model 2); (iii) 𝑐஻஼  = 30 [m/s] (model 3); (iv) 𝑐஻஼  = 40 [m/s] (model 4); 50 linear finite elements of equal 
length are employed for the spatial discretization and Δ𝑡 = 5 × 10ିଶT [𝑠] is adopted. For this model, the 
analytical answer for the axial displacements is found in [21]. 

 

 

Figure 1. Sketch of the heterogeneous rod. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Axial displacements at the middle of the rod for: (a) 𝑐஻஼/𝑐஺஻ = 1; (b) 𝑐஻஼/𝑐஺஻ = 2; (c) 𝑐஻஼/𝑐஺஻ = 3; 
(d) 𝑐஻஼/𝑐஺஻ = 4. 
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Taking into account the discussed approach, 𝑎௘ = 0,1 was adopted only for the segment AB of the model (located 
near the support), while 𝑎௘ = 0 was considered for all other elements (segment BC). To calculate the relative errors 
of the computed results and compare the performance of the different time integration procedures, the following 
expression is utilized: 

 𝐸𝑟𝑟𝑜 = ൤
∑ ൫௨೙ି௨ೌ(௧೙)൯

మಿ
೙సభ

∑ (௨ೌ൫௧೙)൯
మಿ

೙సభ

൨

భ

మ

 (11) 

in which 𝑢 stands for the computed time-history response of a selected degree of freedom, uୟ corresponds 
to its analytical counterpart, and N represents the total number of time steps in the analysis. 

In Figure 2, the time history results for the axial displacements at the center of the rod are depicted, 
considering the referred time integration procedures and ∆𝑡 = 5 × 10ିସ𝑠. In Table 2, the computed relative 
errors for these results are presented. As one may observe, the proposed novel formulation provides 
exceptionally more accurate responses than the referred standard techniques, even yielding much better 
results than the selected composite time integration technique, which considers two solver procedures per 
time step.  

Table 2. Relative errors for the displacements at the middle of the rod 

Method  
𝑐஻஼/𝑐஺஻  

 
 1 2 3 4 

New 0.16 ∙ 10ିଶ 0.37 ∙ 10ିଶ 0.55 ∙ 10ିଶ 0.67 ∙ 10ିଶ 
Newmark 0.58 ∙ 10ିଶ 0.72 ∙ 10ିଶ 0.96 ∙ 10ିଶ 1.11 ∙ 10ିଶ 

Bathe  0.36 ∙ 10ିଶ 0.62 ∙ 10ିଶ 0.90 ∙ 10ିଶ 1.01 ∙ 10ିଶ 

4  Conclusions 

This work discusses an alternative time marching procedure for structural dynamics analysis. The 
discussed method, which is based on displacement and velocity relations, eliminates the need for computing 
accelerations (which may be post-processed, if requested), making it simple and efficient in terms of 
computational effort. The method is truly self-starting, and it allows for controllable numerical dissipation 
at the element level, giving the user the flexibility to introduce numerical dissipation in selected elements 
and adjust its intensity. 

The numerical dissipation property 𝑎𝑒 can be interpreted as an additional physical property of the element, 
similar to the moment of inertia, mass density, or Young's modulus. The method ensures stability and 
maintains second-order accuracy when numerical dissipation is introduced, a characteristic that is not 
always present in classical methods like the Newmark method. In Section 3, results are presented to 
demonstrate the effectiveness of the proposed method. As illustrated, the new technique may outperform 
the computationally demanding Bathe method [5], offering improved performance. 
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