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Abstract. This study presents a novel approach for predicting the critical buckling load of slender, cylindrical, 

tapered steel towers commonly used in wind turbines and telecommunications equipment. These towers are prone 

to instability issues caused by buckling loads, which necessitates accurate evaluation. To overcome the limitations 

of existing instability load formulations and regulatory codes, we developed an artificial neural network (ANN) 

model. The ANN model utilizes a comprehensive database of 1,440 finite element models to accurately predict 

the critical buckling loads. An MLPRegressor model instantiated with the 'adam' solver and the 'tanh' activation 

function in the hidden layers demonstrated a significant alignment with the data, as the model accounted for 

approximately 97% of the variance in the dependent variable. Furthermore, the outcomes obtained from the ANN 

model closely aligned with the original values, surpassing the predictive precision of the classical shell and beam 

formulations, and offering insights into the complexities associated with transformed data. 
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1  Introduction 

Buckling is a structural failure mode involving the transition from one equilibrium state of deformation to 

another when a column undergoes to buckling, it can experience sudden, unstable deformation or collapse.  

The classical approach to evaluate the buckling capacity of columns is given by Euler formula, the 

formulation works under the elastic regime and is derived for prismatic sections i.e., constant inertia. However, to 

improve the stability of the columns some authors, proposed the use of columns with variable inertia, according 

to Goel [1] there are two ways to evaluate the buckling capacity of nonuniform columns: using a continuum 

approach where the mathematical model is solved to find closed form solutions, on the other hand using computer 

solutions a numerical approach or approximated methods can be used.  

Both approaches have their advantages and disadvantages, and the choice of approach depends on the specific 

application and the level of accuracy required. Usually solving mathematical models may not provide accurate 

predictions of the critical load for tapered cantilever columns, while numerical methods can be accurate but are 

computationally expensive and require accurate modelling of the columns.  

When the case of hollow columns is taken into consideration, the problem becomes more complex, essentially 

when a cylindrical shell loaded in compression can fail by global i.e., Euler buckling, with a wavelength related 

to the length of the column, or local i.e., Shell buckling, with a wavelength related to the section width or thickness. 

The behaviour of tapered shell columns is even more complex as the deformation of the shell is not uniform and 

the buckling can be dependent on other geometric parameters, such as the slenderness factor proposed by Dick 

[2]. 

Some authors agreed that regulatory codes do not present a common understanding of which methodology 

should be used, to access the buckling capacity of nonuniform columns[1], [2].  

Therefore, there is a need for more accurate and efficient methods for predicting the critical buckling load 

for tapered cylindrical shell columns, which is where the use of neural networks, can be a promising approach. 

Recently Thai [3], provides a comprehensive overview of the current state of research in the application of 

machine learning (ML) techniques with successful applications in different areas of structural engineering. One of 

the presented ML techniques are the artificial neural networks (ANN), that mimic the behaviour of a nervous 

system and can be used to solve nonlinear and are one of the most popular ML algorithms. Previous studies 

conducted on the application of ANN for predicting the axial buckling mainly focus on uniform columns with 
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different cross sections geometries as I [4]–[6], Y [7], and cylindrical columns [8], [9] ,while the nonuniform 

columns are analysed for Web-tapered I-section [4]. However, as the authors knowledge the application, of ANN 

techniques for estimating the elastic critical buckling load of Hollow Tapered Cylindrical Column are not studied 

yet.  

The objective of this study is to develop an artificial neural network (ANN) model to more accurately predict 

the elastic critical buckling load of Hollow Tapered Cylindrical Columns fixed at one end and free on the other, 

i.e also known as tapered cantilever hollow columns under axial loads. A set of 1440 data of elastic critical buckling 

were generated using numerical analysis and used to develop the ANN model. 

2  Database and parameters 

2.1 Finite Element Model 

This study expands on the previous authors investigations [2]. In this context, dataset generation relies on a 

numerical model employing Finite Element Method (FEM). The tapered hollow columns are modelled using shell 

elements in the software SAP2000. The material attributes remain constant, with steel S275 selected, featuring a 

Yield Strength of 275 MPa and an Elastic Modulus of 210 GPa. To determine meshing size, a sensitivity analysis 

is performed, leading to the selection of a maximum element size of (0.1 x 0.2) m. 

The geometric parameters, including the slenderness factor (𝜂), shell thickness (𝑡), bottom radius (𝑅) and 

column height (𝐻), are employed in the FEM models. The predefined values for these parameters are presented in 

Tab. 1. The slenderness factor (η) is defined according to eq. (1) and is subsequently utilized to calculate the top 

column radius (r). In this calculation, 𝐼𝑡 represents the second moment of inertia of the top section, while 𝐼𝑏  

represents the second moment of inertia of the bottom section.  

 𝜂 = 1 − (
𝐼𝑡

𝐼𝑏
)

1 3⁄

 .  (1) 

The elastic critical axial load was determined through an Eigenvalue buckling analysis. In this analysis, a 

unit load was applied at the free end (top) of the column. Notably, the analysis revealed two distinct buckling 

modes: shell and beam-type buckling. These modes are visually depicted in Fig. 1 for schematic clarity. 

Table 1. Model geometric parameters 

𝜼 t (m) R (m) H (m) 

0.0 0.003 0.25 5.0 

0.1 0.005 0.50 10.0 

0.3 0.010 0.75 15.0 

0.5 0.020 1.00 20.0 

0.7 0.030 1.50 30.0 

0.9  2.00 40.0 

  
 

50.0 

  
 

80.0 

Zoom 

 

 

(a) Shell buckling t = 0.003 m, Pcr = 1309.8 kN (b) Beam buckling t = 0.01m, Pcr = 5942.5 kN 

Figure 1. Example of buckling modes for axial loading of thin-walled circular columns with a bottom radius (R) 

of 0.5 m, top column radius (r) of 0.3 m, and column height (H) of 10 m. 
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2.2 Dataset 

The dataset used to train and test the ANN, are composed by 1440 samples, that after preprocessing to remove 

outliers and inconsistent values are reduced to 1402 samples. The input parameters are presented in Tab. 2, where 

the descriptive analysis of the parameters are shown and the output parameter are the Elastic buckling load Pcr.  

Table 2. Descriptive statistics for the database 

 Input Output 
 R(m) n t(m) r(m) H(m) Pcr (MN) 

mean 0.99 0.58 0.014 0.63 31.04 32.63 

std 0.60 0.31 0.010 0.50 23.05 79.30 

min 0.25 0.10 0.003 0.05 5.00 0.00 

25% 0.50 0.30 0.005 0.23 15.00 0.61 

50% 0.75 0.53 0.010 0.46 20.00 2.41 

75% 1.50 0.90 0.020 0.90 40.00 17.04 

max 2.00 1.00 0.030 2.00 80.00 528.76 

The dataset needs to be separated in two data set, one for train and other for test the model, it is important 

that both data set are representative of the whole data. As the dataset contain information about the type of buckling 

that occurred (shell or beam), this parameter is used to stratify the data, to have a similar distribution of the output 

data in both data set, as shown in Tab. 3. The validation of the ANN model is computed using a stratified k-fold 

cross-validation (CV), where the data set is randomly portioned in K subsets by preserving the same percentage 

for each target class, the training dataset is then portioned in 4 folds stratified by type of buckling for inner 

validation and the validation portion is set to 20%.  

Table 3. Dataset samples and proportions 

    Proportion 
 All Beam Shell Beam Shell 

Total 1402 862 540 61.5% 38.5% 

Training 1000 615 385 61.5% 38.5% 

Test 402 247 155 61.4% 38.6% 

3  Developed ANN Model 

An artificial neural network is a mathematical model built based on the human brain. These models consist 

of decision-making units arranged in layers and connected to form a network. A Multi-layer Perceptron (MLP) is 

a supervised learning algorithm capable of learning non-linear functions. MLPs are composed of an input layer, 

one or more hidden layers, and an output layer. The number of neurons in each layer and the number of hidden 

layers are hyperparameters that need to be defined through analysis and tuning. 

In this study, the scikit-learn machine learning library in Python is used, specifically the MLPRegressor, to 

train the dataset using backpropagation. 

According to Burkov [10] machine learning models perform better in normally distributed data. However, in 

Fig. 2, it can be observed that our feature input parameters are not normally distributed. Since the parameters are 

not continuous, no transformation is applied. However, the output parameter Pcr is highly skewed. To obtain a 

distribution closer to normal, the logarithm of the Pcr values is taken, resulting in the log_Pcr parameter shown in 

Fig. 2, which exhibits a closer-to-normal distribution. 

To improve the accuracy of the ANN model, both the input and output parameters are normalized to a range 

of [-1,1], as shown in eq. (2). Here, X represents the data test sample, 𝑋𝑁 is the normalized data sample, and 𝑋𝑚𝑖𝑛 

and X𝑚𝑎𝑥  are the minimum and maximum values of the parameters under consideration. 

 𝑋𝑁 = 2 
(𝑋−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
− 1 . (2) 

In this study, the evaluation of the ANN and ANFIS models involved the use of two important metrics: the 

coefficient of determination (𝑅2) and the root mean square error (RMSE). These metrics, represented by equations 

3 and 4 respectively, were employed as benchmarks to assess the performance of the models. 
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Figure 2. Parameter distribution 

 𝑅2 = 1 − (
∑ (𝑡𝑖−𝑜𝑖)2𝑛

𝑖=1

∑ 𝑜𝑖
2𝑛

𝑖=1

), (3) 

 𝑅𝑀𝑆𝐸 = (√
1

𝑛
∑ (𝑡𝑖 − 𝑜𝑖)2𝑛

𝑖=1 ), (4) 

where 𝑡𝑖 is the target value of ith the sample, 𝑜𝑖  is the output value of ith sample, and n is the number of 

samples. 

3.1 Artificial Neural Network architecture 

During the training phase, an MLPRegressor model is instantiated with the 'adam' solver and the 'tanh' 

activation function in the hidden layers. To ensure reproducibility, a fixed random state of 5 is set. The model is 

trained with an initial learning rate of 0.01, a maximum of 500 iterations, and training halts if no improvement is 

observed for 10 consecutive iterations. 

Hyperparameter search covers batch sizes (16 to 200) and hidden layers (1-2 layers, 1-20 neurons in first, 1-

2 neurons in second). GridSearchCV optimizes using RMSE and 𝑅2 as scoring metrics.  

Through systematic testing, the optimal architecture is determined to consist of two hidden layers, with 11 

neurons in the first layer and 2 neurons in the second layer, and a batch size of 16.  

4  Results and discussion 

Residual Analysis and the visualization of Predicted and Actual Values are essential for assessing the 

performance of the Artificial Neural Network (ANN) model. Fig. 3 provides a comprehensive understanding of 

the model's performance by comparing its projected values with the actual values. 

Within the test dataset, the metrics demonstrate a significant alignment with the data, as the model accounts 

for approximately 97.0% of the variance in the dependent variable. This highlights the robust proficiency of the 

model in capturing the underlying data patterns. The Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) are -0.058 and -0.073, respectively, further validating the accuracy of the model within the test set. 
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Figure 3. Comparison of Predicted and Actual Values, Residual Plot, and Histogram (with a bin width of 0.05) 

for Evaluating the Predictive Capability of the ANN Model. 

However, it becomes evident that there are outliers present in both the training and test datasets. Analysing 

the distribution of prediction errors (actual - predicted) reveals that majority of these errors fall within a narrow 

range of approximately (-0.1 to 0.1) for the normalized log data. This tight distribution suggests that the model 

tends to make predictions that are consistently close to the actual values. 

The initial dataset's comparison of predicted and actual values is shown in Fig. 4. Logarithmic transformation 

compresses the dataset, notably in higher Pcr values. This leads to more pronounced disparities when reverting 

predictions to the original scale, especially for larger values. While errors cluster around zero, higher values show 

greater divergence between original and predicted values. These underscores complexities introduced by data 

transformation, especially for higher magnitudes. 

Importantly to notice, that the model was trained generally without segregating data by buckling behaviours 

(shell and beam). This could notably impact accurate prediction for higher values. Unique characteristics of these 

buckling behaviours demand tailored modelling for improved accuracy. 

The outcomes obtained from the ANN model were compared to the predictions derived from the classical 

theory of shell buckling, represented by eq. 5. Similarly, the classical theory for column buckling, characterized 

by the Euler formula stated in eq. 6, was utilized. The calculations were performed using averaged values obtained 

from the bottom and top sections of the structure. Here 𝐸 is modulus of elasticity, R radius of shell, t the thickness 

of shell and 𝑣 Poisson’s ratio, 𝐼 is the inertia of the cross-section, the effective length factor (k) dependent on the 

support conditions of the structure, for an ideal perfectly cantilevered column k = 2.0 and the height (𝐻) of the 

column. 

 



Application of Neural Network to Predict the Elastic Critical Buckling Loads for Thin-Walled Tapered Cylindrical Column 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  
Porto – Portugal, 13-16 November, 2023 

 

Figure 4. Comparison of Predicted and Actual Values, Residual Plot, and Histogram from original data  

 𝜎𝑐𝑙
2 =

𝐸

√3(1−𝑣2)
(

𝑡

𝑅
), (5) 

 𝑃𝐸𝑐𝑟 =
𝜋2𝐸𝐼

(𝑘𝐻)2, (6) 

As depicted in Fig. 5, the outcomes obtained from the ANN model closely align with the original values, 

surpassing the predictive precision of the classical shell and beam formulations. 

 

Figure 5. Comparison of Predicted and Actual Values for the test dataset, from classical beam and shell 

formulation and ANN model.  
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Although the classical theory for column buckling follows a similar trend, it consistently overestimates the 

true value. The tendency toward overestimation in the classical theory for column and shell buckling is not 

surprising, as these theories are known as upper bounds theories. 

5  Conclusions 

In conclusion, the results of the ANN model demonstrate its predictive capabilities, as evidenced by its 

alignment with approximately 97% of the variance in the test set. The presence of outliers and the complexities 

associated with transformed data highlight the significance of meticulous data preprocessing and outlier detection 

techniques. Furthermore, the model's difficulty in distinguishing between different buckling types offers valuable 

insights for further refining the model, with the potential to enhance its applicability to specific buckling scenarios. 

When comparing the outcomes of the ANN model with classical theories, it becomes apparent that the ANN 

model exhibits superior predictive precision. This contrasts with the classical theory, which consistently 

overestimates values. Overall, these findings provide valuable insights into the performance of the ANN model 

and its potential for accurately predicting buckling loads for tapered hollow columns. 
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