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Abstract. We investigate the accuracy of the laminar boundary layer over a flat plate in the simulation by an
immersed boundary – Fourier pseudospectral methods (IMERSPEC). In this study, we use the The Fourier pseu-
dospectral method (FPM) combined with the Multi-Direct Forcing Method, can enforce the boundary conditions
accurately by determining the body force iteratively. The IMERSPEC solves the continuity equation and linear
momentum equations numerically implementing the Pseudospectral Fourier Method (PFM) with the use of the
Discrete Fourier Transform (DFT), specifically the Fast Fourier Transform (FFT) algorithm. The reduced com-
putational cost is achieved by the use of FFT as well as the pseudospectral approach which does not solve the
convolution product of the advective term found in momentum linear equations. Furthermore, the mathematical
process of pressure projection replaces the solution of Poisson Equation simultaneously ensures mass balance and
decouples the pressure from the computational solution. The simulations of the laminar boundary layer on a flat
plate at the Reynolds number of 104 are performed by using IMERSPEC and modelling the behaviour of the flow
after the flat’s leading edge to eliminate any undesirable Gibbs phenomenon. To obtain reasonably accurate results
such that the maximum error from the friction coefficient distribution obtained is less than 4% over the useful
domain we use at least a uniform mesh with 1024x256 collocation points. The rightness showed in these results
indicates far improvement from the usual finite volume method’s modelling which needs a local refinement mesh
with far more volumes to present comparable results.

Keywords: Fourier Pseudospectral Method, Immersed Boundary Method, Multi Direct Forcing Method, 2D Lam-
inar Boundary Layer over a Flat Plate.

1 Introduction

The methodology composed by Immersed Boundary Method (IBM) and Pseudospectral Fourier Method
(PFM) called IMERSPEC was created by Mariano et al. [1] and since then has proved high order modelling.
Although its significant accuracy this computational tool has been used solely in flows with only one non-periodic
direction. This limitation occurs since all flows modelled by IMERSPEC must be periodic in all directions.

In an effort to maintain the methodology’s high order and extend its application to non-periodic flows in all
directions, it is modelled the laminar flow over a flat plate without pressure gradients. To the authors’ knowledge,
this is the first paper that models the classical Blasius flow by applying the Fourier method in all directions.

2 Methodology

This section presents the methods which are employed in the flow modelling, Pseudospectral Fourier Method
(PFM) and Immersed Boundary Method (IBM), as the mathematical methodology and some strategies to perform
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the modelling under a computational domain.

2.1 Mathematical Methodology

The present study uses continuity and Navier-Stokes equations in two-dimensional form to model the flow.
Continuity equation is shown in Eq. 1,

∂uj

∂xj
= 0, (1)

where uj is the flow velocity in m/s, xj is space position in m to j = 1 and 2. The Eq. 2,

∂ui

∂t
+

1

2

[
∂(uiuj)

∂xj
+ uj

∂ui

∂xj

]
= −1

ρ

∂p

∂xj
+ ν

∂2ui

∂xi∂xj
+ fi, (2)

is implemented assuming a newtonian fluid and an isothermic flow with constant properties where t represents
physical time in s, ρ is the fluid density in kg/m3, p is the static pressure in N/m2, ν is the fluid kinematic
viscosity in m2/s and f represents a source term, kg/(m2 ·s2), divided for the fluid density, kg/m3, thus resulting
in m/s. Also, the advective term in Eq. 2 is written in the skew-symmetric form for computational stability.

2.2 Immersed Boundary Method

Immersed Boundary Method is implemented assuming two domains: an eulerian (Ω) and a lagrangian (Γ)
one. In Ω, Eq. 1 and Eq. 2 are solved by PFM and in Γ, boundary conditions are imposed through immersed
boundaries. It is assumed in this paper that variables written in lowercase belongs in Ω and variables in uppercase
belongs in Γ.

To communicate between the domains, a source term is used. Thus, the fi from Eq. 2 is defined in Eq. 3,

fi(xi, t) =
{
F (Xi, t) if xi = Xi

0 otherwise
. (3)

The source term represents the influence of the immersed boundary geometry into the flow, thus fi(xi, t) is different
than zero only in the interface between the immersed body and the fluid flow. In the present work, the lagrangian
and eulerian mesh are coincident therefore Eq. 3 is applied without necessary adaptations.

The Direct Forcing Method (DFM), Uhlmann [2], may be used to determine fi. Equations 4,

fi =
∂ui

∂t
+

1

2

[
∂(uiuj)

∂xj
+ uj

∂ui

∂xj

]
+

1

ρ

∂p

∂xj
− ν

∂2ui

∂xi∂xj
, (4)

are obtained by rearranging Eq. 2 in Ω to isolate fi. From the domain definitions, Γ ⊂ Ω alternatively Eq. 2 is
obtained assuming the continuum hypothesis, hence Eq. 4 can be rewritten in Γ through Eq. 5,

Fi(Xi, t) =
∂Ui

∂t
+RHSi, (5)

where RHSi =
1
2

[
∂(UiUj)
∂Xj

+ Uj
∂Ui

∂Xj

]
+ 1

ρ
∂P
∂Xj

− ν ∂2Ui

∂Xi∂Xj
.

For DFM explanations purposes, it is applied the Euler Time Advancement Method in Eq. 5 as can be seen
in the Eq. 6,

Fi(Xi, t) =
U t+∆t
i − U t

i

∆t
+RHSi, (6)

and then a temporary parameter, U∗
i , is added and subtracted simultaneously, thus resulting in Eq. 7,

Fi(Xi, t) =
U t+∆t
i − U∗

i + U∗
i − U t

i

∆t
+RHSi. (7)

Equations 7 can be decomposed in a two equations system,

U∗
i − U t

i

∆t
+RHSi = 0, (8)

Fi(Xi, t) =
UIB − U∗

i

∆t
, (9)
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which compose the DFM. The term UIB corresponds to the desirable velocity imposed to the flow therefore this
is an open variable since it value depends of the implemented condition.

Still under continuum hypothesis, Eq. 8 can be rewritten in Ω and used to determine estimated eulerian
velocity u∗

i . After the calculation of u∗
i , this information is transmitted where there are coincident lagrangian and

eulerian meshes, i.e., u∗
i = U∗

i where xi = Xi and 0 otherwise. Then the lagrangian source term, Fi(Xi, t), is
defined by U∗

i and UIB through Eq. 8 and the resulting value is transmitted to Ω by Eq. 3. The velocity value, in
the next time step, is obtained by Eq. 9.

ut+∆t
i = u∗

i + fi∆t. (10)

Equations 10 are developed from Eq. 9 in Ω, The fluid velocity in the immersed boundary should be equal to
the desirable value imposed, UIB , however it is not the case since temporal/spatial discretizations processes and
mass conservation. For better accuracy, DFM is substituted by the Multi-Direct Forcing Method (MDF) which
turns the DFM in an iterative process until ut+∆t

i → UIB accordingly a predetermined criterion. The works of
Wang et al. [3] and Mariano et al. [1] may be consulted to more details about this method.

2.3 Pseudospectral Fourier Method

Equations 1 and 2 are solved by the Pseudospectral Fourier Method (PFM). Through PFM these equations are
solved in the physical and spectral space therefrom the pseudospectral term in PFM through the use of the Fourier
transform and the inverse Fourier transform. By this approach, differential terms are solved in the spectral space
allowing high precision meanwhile convolutions are avoided by solving vector’s products in the physical space.

By applying Fourier Transform in the continuity equation, Eq. 1, there is Eq. 11,

ikj ûj = 0, (11)

where i =
√
−1, kj is the wavenumber and ûj is the spectral transformed velocity field j. Equation 11 shows the

product between two vectors, kj and ûj , equals to zero therefore, by analytical geometry, it is assumed a orthogonal
relationship between ûj and kj . Consequently, it is defined a imaginary plane called π which is perpendicular to
kj and contains ûj as can be be seen in Fig. 1.

Figure 1. Continuity equation terms in spectral plane and the π plane.

After applying Fourier transform with its properties into Eq. 2, there is Eq. 12,

∂ûi

∂t
+

1

2

(
ikj ûiuj + ûj

∂ûi

∂xj

)
= −ikj p̂− νk2ûi + f̂i, (12)

where k2 is the square norm of the wave number, i.e., k2 = kikj .
The change’s rate of linear momentum, ∂ûi

∂t , belongs to the π plane as well as the viscous term, νk2ûi

and since the pressure is a scalar variable, the pressure gradient term, ikip̂, is collinear with vector kj and thus
perpendicular to the π plane. About the convective term and source term’s positions in relation to this plane,
nothing can be concluded. Equation 12 may be rewritten as Eq. 13,(

∂

∂t
+ νk2ûi

)
ûi︸ ︷︷ ︸

∈π

+
1

2

(
ikj ûiuj + ûj

∂ûi

∂xj

)
+ ikj p̂− f̂i︸ ︷︷ ︸

?

= 0, (13)

to highlight its position’s terms in relation to the π plane.
In Eq. 13 it is shown that the sum between the group of terms is null therefore, considering analytical

geometry, both the groups are in the same plane, the π one. Since the convective, pressure and source terms’
sum belong to the π plane, an operation called projection is applied. This mathematical operation is performed
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by using a projection tensor concept which projects each term in the π plane and as the pressure gradient one
is perpendicular to this plane, the projection operation decouples this term from the linear momentum’s solution.
With the projection tensor applied on the second group in Eq. 13, it is obtained Eq. 14,

∂ûi

∂t
= −νk2ûi + φim

[
1

2

(
ikj ûmuj + ûj

∂ûm

∂xj

)
− f̂m

]
, (14)

where φim = δim − kkm

k2 ; δim = 1 if i = m and zero otherwise. Analysing the Eq. 14 is significant that the pres-
sure decoupling turns the unknowns variables quantities values equals to the number of expressions and with the
projection operation the continuity equation’s properties in spectral space are always fulfilling mass conservation
in the modelled flow.

2.4 Numerical-Computational Methodology

Mathematical functions as Fourier transform and inverse Fourier transform cannot be implemented in a
numerical-computational application, therefore it is used the Discrete Fourier Transform (DFT) in the form of
Fast Fourier Transform (FFT) an algorithm which enables the pseudospectral approach since its low computa-
tional cost.

Even though FFT turns possible PFM its use limit the IMERSPEC under two mainly aspects. The first one
is mesh relatable, i.e., the IMERSPEC’s mesh must be uniform. The other limited aspect is due to the fact that all
properties which would be transformed must have periodic boundary conditions (PBC).

To still model non-periodic boundary conditions (NPBC) of the flow, the computational domain is divided in
two subsets: a complementary and useful domain or zones. In the useful domain, the desired flow is modelled and
in the complementary zone, strategies are performed to turn the non-periodic flow in a periodic one.

To model the boundary layer flow on a flat plate, it is used the Fringe Method to turn periodic the non-periodic
flow. This method was implemented in algorithms which employs MPF associated with other spatial high order
method such as the Spectral Chebychev Method as can be seen in Nordström et al. [4], Lundbladh et al. [5] and
Khujadze and Oberlack [6] and is imposed in Eq. 14 as a source term which may be seen in Eq. 15,

fi = Ψ(ui −Qtxi), (15)

where Ψ is a smooth dumping function different than zero only in the complementary domain and varies between
0 and 1; ui are the flow velocity in t instant; and Qtxi are desired target solutions in xi direction. Figure 2a shows
the Ψ used over the a complementary domain and the Qtx is represented by Fig. 2b.

(a) Ψ function

0.0 0.2 0.4

x(m)

0.00

0.25

0.50

0.75

1.00

Ψ
(x
)

(b) Qtx

Figure 2. Fringe variables over a complementary domain

The dump function, Ψ, is smooth in the initial and final part of the complementary domain and it is defined
as shown in Eq. 16

Ψ(x) = S

(
x− xi

∆i

)
− S

(
x− xf

∆f
+ 1

)
, (16)
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where xi and xf mark the initial and final complementary zone’s positions; ∆i and ∆f define Ψ form; and S(x)
is a smooth step function with S(x) = 0 for x ≤ 0 and S(x) = 1 for x ≥ 1. Qtx is variable over the direction
of development’s flow causing a fictitious spatial development inside the complementary zone, this parameter is
defined by a 4/3 Pade approximation of Blasius solution made by Ahmad and Al-Barakati [7] while Qty is defined
by mass conservation.

Due to the use of a high order spatial discretization method as PFM, there must be implemented a high order
temporal discretization method as well. In face of that, it is implemented in the present code the fourth-order 6
stages Runge-Kutta scheme (RK46) developed by Allampalli et al. [8].

3 Results and Discussion

In Figure 3 is shown the implementation’s scheme of the two-dimensional boundary layer over a flat plate
without pressure gradient. To avoid Gibbs phenomenon due the discontinuity of the leading edge’s plate, the useful
domain’s inlet is imposed as the Blasius profiles u and v for x = 0.5m using the Fringe Method.

Part of the transverse computational domain is not modelled to ensure the transverse FFT’s periodicity con-
dition while in x direction it is used the complementary domain to achieve this purpose. The dashed line in Fig. 3
marks where the periodicity conditions are imposed.

The top’s boundary conditions are null Neumann conditions on the y direction while the plate’s boundary
conditions are the no slip ones. Both this boundary conditions are imposed by the IBM/MDF and as a shell
concept to minimise flow’s discontinuities as discussed by de Freitas [9].

Figure 3. Boundary layer modelling’s scheme

The parameters used in the virtual experiments are presented in Tab. 1 where Ly is the transverse computa-
tional domain’s length, Lx is the longitudinal length, U∞ is the free flow velocity, CFL represents the Courant-
Friedrichs-Lewis temporal condition, tf is the physical time modelled, ϵ is the MDF criterion and Re represents
the Reynolds number calculated as viewed in Eq. 17,

Re =
U∞ · x

ν
, (17)

wherein x = 1.0m.

Table 1. Simulations parameters

Ly Lx U∞ Re CFL tf ϵ

0.38m 4Ly = 1.52m 1.0 m/s 104 0.5 10 s 10−4

Virtual experiments were performed with meshes equal to 256× 64, 512× 128, 1024× 256 and 2048× 512
collocation points and the flow modelled is a laminar one.

Exact drag coefficients predictions, Cd, represents a sensible criterion to evaluate the methodology’s accuracy
according Hirsch [10]. In face of that, we use the friction coefficient, Cf , distribution along the useful domain to
determine the accuracy of IMERSPEC comparing, when useful, the computational answers with Blasius solutions.
The friction coefficients are chosen since the drag formed in a Blasius classical flow is composed solely by friction.

Figure 4a shows Cf distributions to the Blasius solution and the performed meshes while Fig. 4b presents the
computational solutions’ relative error in relation to Blasius. Both figures indicate that more accuracy is obtained
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by mesh refinement mainly in the initial portion of the useful domain, 0.5 ≤ x ≤ 0.75m, and part some final
portion, x ≥ 1.3m. This low rightness portions in the domain are, probably, due the fringe method which turns a
non-periodic flow into a periodic one.

(a) Cf
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Figure 4. Friction coefficient and relative error distributions

The most refined mesh, 2048 × 512 collocation points, has, approximately, 2% maximum error which is a
comparable result to commercial algorithms and is achieved by a uniform mesh. Also, the intermediate 1024×256
mesh presents comparable results with relative errors less than 4% over the useful domain.

Velocities u and v fields in the useful domain are viewed in Fig. 5a and 5b to the intermediate mesh of
1024 × 256 collocation points. The u field is shown to be qualitative close to the Blasius expected behaviour
conversely the v field presents low accuracy close to the inlet’s domain. Thus, in this paper the v component is
more closely analysed.

(a) u (b) v

Figure 5. Field velocities in the useful domain to 1024x256 collocation points

Horizontal v profiles in Ly/2 over all computational domain are shown in Fig. 6 where the complementary
domain corresponds to x < 0.5m. It can be said that Qty, calculated by mass conservation, forces a negative
value in v to recuperate the computational flow until the useful domain’s inlet as a counterbalance to the fictitious
spatial development imposed by Qtx, Fig. 2b. From Figure 6, is clear that the regions next to the fringe zone are
the most inexact, as viewed in Fig. 4a, even though the mesh refinement causes significant improvement.

4 Conclusions

In this paper was modelled the flow over a flat plate without pressure gradient using the IMERSPEC. This
classical flow was not adapted using pure Fourier Method or similar ones before since the flow must have PBC in
all directions. The virtual experiment was possible due the use of the Fringe method and a transverse non modelled
domain’s part. It is highlighted that the most refined mesh, 2048 × 512, has relative errors less than 2% and the
most computational solutions inaccuracy parts are close to the complementary domain.
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Figure 6. Horizontal v profile in Ly/2
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