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Abstract. This work aims at presenting a computational approach to study two-phase flows and the coalescence
phenomenon using direct numerical simulation. The flows are modeled by the incompressible Navier-Stokes
equations, which are approximated by the Finite Element Method. The Galerkin formulation is used to discretize
the Navier-Stokes equations in the spatial domain and the semi-Lagrangian method is used to discretize the material
derivative backward in time. In order to satisfy the Ladyzhenskaya–Babuška–Brezzi condition, high-order pair of
elements are used, with pressure and velocity fields being calculated on different sets of the unstructured mesh
nodes. The interface is modeled by an uncoupled adaptive moving mesh, where interface nodes are tracked in
a Lagrangian fashion and moved with the velocity solution of the motion equations. The interface tension is
computed using the interface curvature and the gradient of a Heaviside function, and added in the momentum
equations as a volume force. In order to stabilize the simulation, a smooth transition between fluid properties is
defined on the interface region. Several benchmark tests have been carried out to validate the proposed approach,
and the obtained results have demonstrated agreement with analytical solutions and results reported in the literature.
A coalescence modeling is also proposed considering geometric parameters and results show interesting dynamics.

Keywords: Two-phase flows, coalescence, Finite Element Method, semi-Lagrangian, unstructured mesh.

1 Introduction

Multiphase flows are present in a variety of natural phenomena and industrial applications. Atmosphere,
ocean waves, blood circulation, and various other flows in our daily lives are characterized by the presence of more
than one phase. In the industry, the current situation is no different. Cooling systems using phase-changing fluids
are employed in a wide range of applications, from electronic components to nuclear power plants. The combustion
of liquid fuels, also essential for a significant portion of human activities, is usually preceded by atomization into
droplets to form an air-fuel mixture with a larger contact surface. Oil extraction involves the simultaneous flow
of oil, gas, water, and occasional solid particles. Therefore, as declared by Tryggvason et al. [1], it would not
be an exaggeration to state that virtually all industrial fluid applications today involve flows with multiple phases.
From this statement, one can deduce that the development of methods for studying and simulating multiphase
flows – and, in particular, two-phase flows – is highly relevant not only for understanding and predicting natural
phenomena but also for improving industrial processes.

An important distinction among two-phase flow simulation methodologies consists in the particle system
interpretation, which can be classically classified between the Eulerian and the Lagrangian approaches. More
recently, the semi-Lagrangian approach, which combines the characteristics of Eulerian and Lagrangian interpre-
tations, rised in popularity. In this method, although the scalar field is defined with respect to static spatial points,
particle movement is considered to determine a virtual position of these points at the previous time instant, at each
time step. Although widely used today, the mathematical concept of the semi-Lagrangian method dates back to
the mid-20th century. In 1959, the semi-Lagrangian method was first described by Wiin-Nielsen [2], and in 1963,
Sawyer [3] synthesized it in a very similar way to the one used in this work. In both cases, the application of the
semi-Lagrangian method focused on meteorology, for weather forecasting through the simulation of atmospheric
flows – field in which it achieved notable relevance due to two of its main characteristics: unconditional stability
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and the possibility of using high time steps. Although consolidated in meteorology, the use of the semi-Lagrangian
method for the direct numerical simulation of the Navier-Stokes equations was not as frequent and grew gradually.
In 1990, Maday et al. [4] applied first, second, and third-order semi-Lagrangian methods to simulate flows modeled
by incompressible Navier-Stokes equations. In 1994, Boukir et al. [5] compared a first-order and a second-order
semi-Lagrangian method to evaluate a steady flow of a vortex in a cavity and a transient problem of natural con-
vection. In 2000, Phillips and Phillips [6] validated the application of the semi-Lagrangian method to simulate
flows around a cylinder with Reynolds number varying between 1 and 50. Over the years, the complexity of the
simulated flows has increased. In 2015, Celledoni et al. [7] proposed a class of higher-order semi-Lagrangian
methods using Spectral Element Methods for spatial discretization and exponential integrators for temporal evolu-
tion of the simulation, for flows with high Reynolds numbers. In 2021, Wilde et al. [8] presented a model based on
high-order semi-Lagrangian methods and the lattice Boltzmann equation, applied to the analysis of turbulence in
three-dimensional compressible flows. In 2022, Anjos et al. [9] proposed an approach based on the second-order
semi-Lagrangian method, in conjunction with the Finite Element Method and the Arbitrary Lagrangian-Eulerian
formulation, for the simulation of two-dimensional axisymmetric flows.

Based on the application of the semi-Lagrangian method for a wide variety of simulations of varying de-
grees of complexity in recent times, this work aims to present the use of this approach in an interface-tracking
methodology for the simulation of two-phase flows.

2 Methodology

In the proposed methodology, the two-phase flows are modeled by the incompressible Navier-Stokes equa-
tions, as shown in (1) and (2), where the last two terms respectively represent gravity and interfacial tension forces.
An one-fluid approach is employed, whereby the domain occupied by the two phases is described by a single set
of equations. The two-phase phenomenon is obtained by associating different density and viscosity values to each
region of the domain, as well as including the interfacial tension force as a body force in the last equation.

∇ · v = 0 (1)
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These equations are approximated by the Finite Element Method, and the Galerkin method is employed to
discretize its continuous variables in the spatial domain. An unstructured static mesh is defined throughout the
spatial domain, and the Ladyzhenskaya–Babuška–Brezzi stability condition is verified to ensure the formulation’s
stability. For the two-dimensional approach, mini and quadratic triangular elements were selected to compose the
mesh, while for the three-dimensional approach, the choice was for the mini element due to its lower associated
computational cost.

After the application of the Galerkin method, spatially discrete equations are obtained. For the numerical
simulation of the problem, it is necessary to discretize the material derivative to obtain discrete equations in both
space and time. In this work, such discretization is performed using the semi-Lagrangian method. Let xi be the
position of a mesh node, and xd be the virtual starting position at time n of a fluid particle that reached position xi

at time n+ 1. Let vn+1
i be the fluid velocity at point xi at time n+ 1, and vn

d be the fluid velocity at point xd at
time n. The semi-Lagrangian method approximates the material derivative of velocity as shown in (3). To calculate
vn
d, it is necessary to first calculate the position xn

d using an estimate of the previous position of the mesh nodes,
given by (4). When the point xd remains inside the mesh, its velocity vd is interpolated from the velocities of the
nodes of the element which contains it. When the point xd exits the domain, it is determined which boundary it
surpassed, and vd is set as the velocity corresponding to that boundary condition.
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An interface-tracking model is applied, where the interface is explicitly defined by a sequential set of points.
These points are independent of the static mesh that discretizes the domain and are moved over it as the iterations
progress. To assign density and viscosity properties to the nodes of the static mesh, a region Ωin interior to the set
of interface points and a region Ωout exterior to Ωin are defined. The properties of each fluid are associated with
the nodes belonging to each of these regions. To provide a smooth transition of properties at the interfacial region
and thus avoid numerical instabilities, a smoothed Heaviside function Hϵ(ϕ), proposed by Sussman and Smereka
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[10], was employed to generate density and viscosity fields. It is shown in (5), where ϵ is half of the interface
thickness and ϕ is the distance from a point to the interface.

Hϵ(ϕ) =


0 se ϕ < −ϵ

1

2

[
1 +

ϕ

ϵ
+

1

π
sen(

π ϕ

ϵ
)
]

se −ϵ ≤ ϕ ≤ ϵ

1 se ϕ > ϵ

(5)

Thus, the density and viscosity of each node of the static mesh are calculated according to (6) and (7),
respectively.

ρ(ϕ) = ρin Hϵ(ϕ) + ρout (1−Hϵ(ϕ)) (6) µ(ϕ) = µin Hϵ(ϕ) + µout (1−Hϵ(ϕ)) (7)

For modeling the interfacial tension, the curvature is calculated at each interface point, and the calculated
curvature is distributed to the static mesh. Then, with the curvature κ and the smoothed Heaviside function Hϵ for
each node of the static mesh, the interfacial tension formulation of Unverdi and Tryggvason [11] is extended as
shown in (8).

f = σ κ δ n = −σ κ ∇H (8)

The temporal and spatial discretization of the problem transforms it into a linear system, and the temporal
evolution of the flow is obtained by solving this system consecutively. At the end of each iteration, the points
that make up the interface mesh are moved with the velocity imposed by the static mesh. To avoid clustering of
the interface points over time, the velocity of each interface point is decomposed into a normal and a tangential
components, and only the normal component is considered for its movement.

The interface remeshing algorithm implemented in this methodology defines a minimum acceptable distance
dmin – given by half of the average length of the edges of the static mesh elements – and a maximum acceptable
distance dmax – given by twice the average length of the edges of the static mesh elements – between each pair of
adjacent interface points. After moving the interface in each iteration of the simulation, the distance between each
pair of adjacent points is calculated. For two consecutive interface points separated by a distance d, the following
procedure is executed: if d < dmin, the last point is removed; if d > dmax, a point is added at the geometric center
between them. This ensures a spacing between interface points that is sufficiently homogeneous and compatible
with the static mesh that discretizes the domain.

Furthermore, to evaluate the applicability of the methodology for describing flows with topological changes,
a purely geometric model is proposed to describe the coalescence phenomenon. When two bubbles approach
each other, a boundary layer forms between their interfaces, which, to be adequately described in the current
methodology, would require the presence of some static mesh elements in that region. In the case where the
distance between the bubbles is less than one element, for example, it can be said that the bubbles are so close that
the methodology described so far would no longer be sufficient to describe the phenomena occurring in that region
of the flow. Therefore, this methodology proposes that when the minimum distance between the interfaces of two
bubbles becomes smaller than dmin, these interfaces merge, resulting in a larger bubble. The points of a bubble
that are at a distance less than 2 dmin from the other bubble are excluded, and the remaining points form a single
interface. This coalescence model has already been implemented for two-dimensional flows, and its extension to
three dimensions is programmed for the next steps of this work.

3 Results

This section exposes the results of the simulations that were carried out, with the aim of validating the de-
scribed methodology. Two test cases are shown for both two-dimensional and three-dimensional approaches: the
static droplet and the oscillating droplet. Finally, to verify the applicability of the methodology to flows involv-
ing topological changes, two-dimensional coalescence cases of two initially circular bubbles and of two Taylor
bubbles were simulated. The results obtained for the referred simulations showed a substantial compatibility with
analytical solutions and experiments reported in the literature, corroborating the validity of the methodology for
the description of two-phase flows.
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3.1 Static Droplet

This test consists in simulating a circular/spherical droplet of fluid in a quiescent medium. This evaluates the
equilibrium between the pressure and the surface tension force, and it is a measure of the method’s stability. At the
upper boundary of the domain, a condition of prescribed zero pressure was imposed, while at the other boundaries,
no-slip conditions were imposed.

For the simulation of the two-dimensional case, a circular droplet with diameter D = 1 is considered, im-
mersed in a square domain with side length L = 4. The simulation was carried out with We = 10, Re = 100,
and the following properties: ρin = 0.01 and µin = 0.5 for the internal fluid, and ρout = 1 and µout = 1 for
the external fluid. Two triangular meshes were used: one mesh with 47566 mini elements and 71618 nodes; and
one mesh with 47566 quadratic elements and 95669 nodes. For the representation of the droplet, initially, a mesh
with 112 points was defined in order to match the refinement of the interface with that of the static mesh. The
flow was simulated for 1000 iterations, with a time step of ∆t = 0.005. A comparison between the horizontal
pressure profiles passing through the center of the droplet obtained in the simulations and the analytical profile,
characterized by a uniform pressure inside the droplet with a value of 0.2, is shown in Figure 1. For both mini and
quadratic elements, the final obtained internal pressure was 0.200079, resulting in an error of 0.039%, highlighting
the high compatibility between the applied methodology and theory.

Figure 1. Comparison between the horizontal pressure profile obtained at the end of the simulation and the analyt-
ical profile for the static droplet two-dimmensional simulation.

For the three-dimensional case, the simulation was executed with the following parameters: Re = 1, We = 1,
ρin = 1, µin = 1, ρout = 0.001 and µout = 0.001. A tetrahedral mesh with 110464 mini elements and 131888
nodes was used to discretize a domain with side length L = 2. The flow was simulated for 1000 iterations, with
a time step of ∆t = 0.005. A study regarding the intensity of the spurious velocities and the pressure error was
conducted, and its results are shown in Table 1. The simulation appears to degrade when the interface mesh average
edge length is smaller than the fluid mesh average edge length; optimal values are obtained with closely matched
average edge lengths.

Table 1. Spurious velocity intensity and pressure error for the three-dimensional static droplet test case.

Number of nodes vmax ∆perror

159 6× 10−1 0.408%

317 1.9× 10−2 0.118%

625 1.2× 10−2 0.102%

1141 4× 10−3 0.061%

4308 4.2× 10−1 18.4%

9500 366 1223.1%
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3.2 Oscillating Droplet

The problem of the oscillating droplet is quite similar to that of the static droplet. In this case, a initially
stationary droplet immersed in another fluid without the action of gravity is also considered, and the same boundary
conditions are imposed. However, an initial perturbation in the droplet diameter is considered, characterizing an
elliptical/ellipsoidal geometry. It is expected that the interfacial tension leads to a reduction in the eccentricity
of the droplet, which, combined with the damping caused by viscosity, will cause a damped harmonic oscillator
motion. The frequency of this oscillation can be calculated analytically through the theory developed by Strutt [12]
and extended by Fyfe et al. [13], represented by (9), where n is the mode of oscillation, σ is the interfacial tension,
ρin is the density of the droplet fluid, ρout is the density of the external fluid, and R is the reference radius of the
droplet.

ω =

√
(n3 − n) σ

(ρin + ρout) R3
(9)

For the two-dimensional case, this flow was simulated with a droplet of diameter D = 1, with an initial
horizontal perturbation of 0.01. The defined parameters for the flow were Re = 100, We = 10, ρin = 1, µin = 1,
ρout = 0.001 and µout = 0.01, and the same meshes from the static droplet simulation were used. The flow was
simulated for 1600 iterations, with a time step of ∆t = 0.005. Using these parameters, the analytical oscillation
frequency ω = 2.1898 was calculated through (9) for the lowest oscillation mode (n = 2). The simulations with
mini and quadratic elements resulted in frequencies of 2.1542 and 2.1543, respectively, leading to relative errors
of −1.63% and −1.62%. For the three-dimensional case, the flow was simulated with Re = 500, We = 80,
ρin = 1, µin = 1, ρout = 10−6 and µout = 10−6. A fluid mesh with 210724 nodes and an interface mesh
with 898 nodes were used. The simulation was conducted over 600 iterations with a time step of dt = 0.02. The
analytical frequency is 0.8944, and a frequency of 0.9372 was obtained from the simulation, leading to a relative
error of 4.78%. For both cases, the evolution of the droplet’s horizontal length over time is shown in Figure 2.

Figure 2. Evolution of the horizontal length of the oscillating droplet during the two-dimmensional (left figure)
and the three-dimmensional (right figure) simulations.

3.3 Two-dimmensional coalescence of Two Rising Bubbles

This simulation involves the flow of two bubbles rising under the influence of gravity, and the coalescence
phenomenon is observed, following the methodology described in the previous section. The initial geometry
of the flow consists in two bubbles with diameter D = 1, whose centers are separated by a distance of 1.18, in a
rectangular domain with width equal to 5 and height equal to 10. There were imposed a no-slip boundary condition
at the bottom boundary of the domain, symmetry conditions at the left and right boundaries and a prescribed zero
pressure condition at the upper boundary.

The simulation parameters were inspired by an air-glycerine system experiment conducted by Manasseh et al.
[14]: Ga1/2 = 10, Eo = 5, ρin = 1.44, µin = 0.01, ρout = 1220 and µout = 1. Two triangular meshes were used:
one mesh with 33204 mini elements and 50046 nodes; and one mesh with 33204 quadratic elements and 66687
nodes. For the representation of the bubbles, initial meshes with 50 points were defined to match their refinement
with that of the static mesh. The flow was simulated for 46000 iterations, with a time step of ∆t = 0.0001. The
validation of the methodology was performed by comparing the simulations interface geometry with those of the
experiment conducted by Manasseh et al. [14], as shown in Figure 3.
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Figure 3. Interface geometry at instants t = 2.0, t = 2.5, t = 3.0, and t = 3.5 for the simulation with the mini
elements mesh (top row), the simulation with the quadratic elements mesh (middle row) and the experiment of
coalescence of two bubbles conducted by Manasseh et al. [14] (bottom row).

Coalescence simulation of Taylor bubbles have also shown good agreement with its expected behavior, as
depicted by Figure 4, with the recently coalesced Taylor bubble achieving its characteristic shape after a damped
wave propagation on the interface. The flow initial geometry consists in two elliptical bubbles with horizontal semi-
axis of 0.48 and vertical semi-axis of 0.88, making them equivalent in area to a circular bubble with a diameter
30% larger than the channel width L = 1. The channel has a height of 10, and the bubbles are initially separated by
a distance of 0.25. The flow was simulated with the parameters Ga1/2 = 10 and Eo = 5, and for the fluids, based
on an air-water system, the following properties were considered: ρin = 1.145, µin = 1.79 × 10−5, ρout = 997
and µout = 89× 10−5. A mesh with 18952 quadratic elements and 38493 nodes was used. For the representation
of the bubbles, initial meshes with 115 points were defined to match their refinement with that of the static mesh.
The flow was simulated for 9000 iterations, with a time step of ∆t = 0.0025. Even with more critical conditions
involving wall effects on bubble dynamics, it is observed that the proposed methodology was able to describe both
the flow and the coalescence phenomenon in a feasible manner, confirming the expected behaviors based on the
physics of the problem.

Figure 4. Evolution of the interface geometry in the coalescence of two Taylor bubbles simulation.
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4 Conclusion

In this work, a methodology is presented for the study of two-phase flows using direct numerical simulation,
based on the two-dimensional incompressible Navier-Stokes equations, the Finite Element Method, the semi-
Lagrangian method, and an interface-tracking strategy. In summary, the variety of simulated flows allowed us to
confront the proposed methodology from different perspectives, and the accuracy of the results for the various
analyzed phenomena corroborated its validity in describing them. Therefore, it is demonstrated that the new
method proposed in this work is accurate for simulating two-dimensional and three-dimensional two-phase flows,
with the presence of confined droplets and bubbles and the occurrence of topology changes. Ongoing and future
efforts are focused on the development of adaptive refinement for both domain and interface meshes, as well as on
the implementation of three-dimensional models for bubble coalescence and break-up.
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