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Abstract. Flow models for 1-D two-phase flows in pipelines are commonly implemented using first-order 

schemes. Despite being simple and robust, these schemes introduce a large amount of numerical diffusion due to 

low order truncation errors, causing a high loss of accuracy. In the present work, for the first time in literature, we 

propose the use of the very high-order (VHO) flux-reconstruction (FR) method to improve the accuracy and 

efficiency of one-dimensional two-phase flow simulations in pipelines. The FR is implemented to solve the mass 

and momentum conservation equations of the isentropic four-equation single-pressure two-fluid model. The 

pressure correction equation is obtained through the mass conservation and a semi-implicit pressure-based method 

SIMPLE-like is used to perform the coupling. The pressure equation is solved through the Two-Point Flux 

Approximation (TPFA) finite volume technique. To test and numerically validate our formulation, we present two 

benchmark problems. For the problems we have solved, our results are very promising. 

Keywords: 1-D Fluid Flow in Pipelines, Four-Equation Single-Pressure Two-Fluid Model, SIMPLE algorithm, 

Flux reconstruction (FR), Finite Volume Method. 

1  Introduction 

A variety of engineering problems have their resolution dependent on the knowledge of the two-phase flow 

inside pipelines, as in the case of the nuclear, mechanical, chemical and petroleum industries problems. The flow 

assurance, for example, involves a series of problems in the oil industry and its management depends on the 

knowledge of the pressure, velocity and temperature fields of gas–liquid flow inside the pipelines [1]. However, 

predicting physical conditions of two-phase flows in large pipelines is a task that involves several difficulties. 

A very useful tool for the prediction of two-phase flows inside pipelines is the numerical simulation. 

However, even with this approach due to the high computational cost involved, many simplifications are 

commonly assumed for numerical simulation to be feasible from a computational point of view. A method to 

efficiently represent the behavior of two-phase flows within large pipelines is required, and is the use of a 

simplified one-dimensional two-fluid model together with an appropriate numerical method represents a good 

option [2]. A two-fluid model consists of a system of non-linear partial differential equations that represent the 

mass, momentum and energy conservation principles, written for each phase [3].  

Various formulations exist for the two-fluid model concerning the derivation of governing equations and 

their practical computational application [3, 4]. In this research, we seek to solve the common variant of the two-

fluid model, that considers that both phases share the same pressure field, i.e., the so called two-fluid four-equation 

single-pressure model, which is the isothermal case of  the two-fluid six-equation single-pressure model [5], same 
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model used in reactor thermal-hydraulics analysis codes RALAP, TRAC, and CATHARE [6, 7]. This model, 

however, suffers from the Kelvin–Helmholtz instability [8], that arises whenever two fluids are forced to flow 

together sharing the pressure field. To solve this problem, one of the alternatives is to use the CATHERE model 

[9], which use an interfacial pressure difference [10]. 

Usually, it is common to use staggered grid and donor-cell differencing schemes to obtain stable results in 

two-fluid six-equation model [5, 11], however, the diffusion added by donor-cell differencing schemes reduces 

the accuracy of the solutions. Therefore, adopting higher-order schemes together with the CATHERE model can 

also guarantee stable and more accurate results. There are several higher-order schemes in literature that can be 

used to model such problems, such as the Monotonic Upstream-centered Scheme for Conservation Laws 

(MUSCL) scheme, proposed by van Leer [12], the spectral volume (SV) method, that was developed in papers of 

Wang and Liu [13,14,15,16,17],  the spectral difference (SD) method, proposed by Liu et al. [18], and the Flux 

Reconstruction (FR) method, proposed by Huynh [19], which has been recently adapted for the numerical 

modeling of the multiphase and multicomponent fluid flow in heterogeneous and anisotropic porous media by part 

of the authors of the present work [20, 21, 22, 23, 24]. 

In the present work, we implement a semi-implicit algorithm to solve the hyperbolic 1D two-fluid model 

[25], using the 2nd order MUSCL type finite volume and the very high order (≥ 3) FR method. As far as we know, 

this is the first work in which the FR is used to model the two-fluid model in pipelines. Even though our 

implementation of the FR method still presents certain problems for the complete two-fluid model our results for 

a special smooth problem are very promising showing, the potential of our formulation to model more complex 

flow assurance problems. The whole formulation was implemented using the Julia computational language [26]. 

2  Mathematical formulation 

The two-fluid four-equation single-pressure model is composed by two continuity equations, one for each 

phase, and two momentum equations, also one for each phase. The equations were adapted for the 1D, 

compressible, inviscid and isothermal flow. The continuity equation, for phase 𝑘 = 𝐿(𝑙𝑖𝑞𝑢𝑖𝑑), 𝐺(𝑔𝑎𝑠), can be 

written as: 

 
𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) +

𝜕

𝜕𝑥
(𝛼𝑘𝜌𝑘𝑢𝑘) = 0  (1) 

where 𝛼𝑘 represents the volumetric fraction occupied by phase 𝑘 in the section, 𝜌𝑘 represents the density and  𝑢𝑘 

the velocity. Using the same terms, we can write the momentum equation, for phase 𝑘, as: 

 
∂

∂𝑡
(𝛼𝑘𝜌𝑘𝑢𝑘) +

∂

∂𝑥
(𝛼𝑘𝜌𝑘𝑢𝑘

2) = −𝛼𝑘
∂𝑝𝑘

∂𝑥
− (𝑝𝑘 − 𝑝𝑘

𝑖 )
∂𝛼𝑘

∂𝑥
+ 𝛼𝑘𝜌𝑘𝑔 𝑠𝑖𝑛 𝜃  (2) 

where 𝑝 is the pressure shared by the phases, 𝑔 is the acceleration of gravity, θ is the pipe slope, and 𝑝𝑘
𝑖  is the 

interface pressure in phase 𝑘. In this model, the effects of mass transfer, wall friction and interface friction are 

neglected.  

In order to ensure the hyperbolicity of the system of equations and to stabilize the simulation, we have 

adopted the CATHERE model [9], which uses the artificial interfacial pressure difference term: 

 (𝑝𝑘 − 𝑝𝑘
𝑖 ) = 𝛥𝑝 = 𝛾

𝛼𝐺𝛼𝐿𝜌𝐺𝜌𝐿

𝛼𝐿𝜌𝐺+𝛼𝐺𝜌𝐿
(𝑢𝐺 − 𝑢𝐿)2  (3) 

The constant 𝛾 is a value introduced to guarantee hyperbolicity [9]. As recommended by Evje and Flatten 

[27] and adopted by Wang et al. [10], we have used 𝛾 = 1.2. 

3  Numerical Formulation 

To discretize the governing equations, we have combined the locally conservative finite volume method 

(FVM) [28] for the pressure equation based on discretized by the classical Two Point Flux Approximation (TPFA) 

and the Flux Reconstruction FR method to discretize the transport problem [22, 23, 24]. In Fig. 1, we show the 

staggered grid strategy that we have used. This grid is used to avoid the odd-even decoupling problem in pressure-

correction algorithms [28]. The vector variables (velocities) are defined at the control surfaces, while the scalar 
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variables (pressure and volume fractions) are computed and associated to the control volumes of the primal mesh. 

The letters 𝑤, 𝑒 and 𝑒𝑒 used to identify neighboring control surfaces, while 𝑊, 𝑃, 𝐸 and 𝐹 are the control volumes 

of the primal mesh, and 𝑊𝑆, 𝑃𝑆, 𝐸𝑆 and 𝐹𝑆 are the control volumes of the dual mesh. 

 

Figure 1. Control volumes and the staggered grid approach (adapted from Wang et al. [10]). 

The advective terms are evaluated applying different methods. For comparison purposes we have used the 

first-order upwind (FOU) or the MUSCL schemes to approximate the fluxes. In this case, we have used the Euler 

Backward for the time integration. Also, for the first time in literature, we have also implemented the Flux 

Reconstruction (FR) method to approximate de advective fluxes. For the latter case, to improve robustness and 

accuracy, time integration was performed using the third-order explicit Total Variation Diminishing Runge-Kutta 

(TVD-RK) method [29]. 

For the FOU and MUSCL schemes, the value on the face 𝑒 (Fig.1) of a generic advected variable can be 

written [30], as follows: 

 𝜙𝑒 = {
𝜙𝑃 +

𝛥𝑥

2
𝜓(𝑟) (

𝜕𝜙

𝜕𝑥
)

𝑤
,  if  𝑢𝑒 > 0

𝜙𝐸 −
𝛥𝑥

2
𝜓(𝑟) (

𝜕𝜙

𝜕𝑥
)

𝑒𝑒
, otherwise

  (4) 

where 𝜓(𝑟) represents the flux limiter function and 𝑟 is the gradient ratio (r = ∇𝜙upwind ∇𝜙downwind⁄ ). For the 

FOU scheme, 𝜓 = 0, while for the MUSCL scheme different values of 𝜓(𝑟) can be adopted giving rise to different 

slope limiters. Here we choose the Minmod slope limiter [31] 

 

 𝜓(𝑟) = max[0,min(1, 𝑟)] (5) 

For FR method, the velocities and volume fractions fields are saved in points named solution points [19], that 

are localized by a quadrature. Therefore, for the FR, velocities and volumetric fractions are co-localized. The 

pressure field continues to be balanced at the centers of the CVs. In the Fig. 2, it is showed the grid with solution 

points for a case that two points are used for to reconstruct first degree polynomials (FR-P1). 

 

 

Figure 2. Control volumes for FR-P1. 

In the FR method, the continuous flux function 𝐹𝐶  is constructed as: 

 𝐹𝐶 = 𝐹𝑖
𝒫𝑛 + (𝐹𝐿

𝛿𝐼 − 𝐹𝐿
𝛿𝐷)ℎ𝐿 + (𝐹𝑅

𝛿𝐼 − 𝐹𝑅
𝛿𝐷)ℎ𝑅 (6) 

and the generic advective term 
𝜕𝐹

𝜕𝑥
 is approximated by: 
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𝜕𝐹

𝜕𝑥
= ∑ 𝐹𝛿𝐷𝑘

𝑗=0

𝑑𝑙𝑗

𝑑𝑥
+ (𝐹𝐿

𝛿𝐼 − 𝐹𝐿
𝛿𝐷)

𝑑ℎ𝐿

𝑑𝑥
+ (𝐹𝑅

𝛿𝐼 − 𝐹𝑅
𝛿𝐷)

𝑑ℎ𝑅

𝑑𝑥
 (7) 

where the terms 𝐹𝛿𝐷 are the discontinuous fluxes, 𝐹𝐿
𝛿𝐼 and 𝐹𝑅

𝛿𝐼 are the left and right fluxes, ℎ  is the correction 

function and 𝑙𝑗 are the Lagrange polynomials defined inside each control volume using points named solution 

points, see [19]. The quadrature used for location of solution points was that of the Lobatto. The Radau polynomials 

were used for ℎ and the Riemman Solver used was the Local-Lax-Friedrichs (LLF) scheme [32].  These choices 

are the same ones adopted by Galindo et al. [24]. 

The semi-implicit pressure-based method SIMPLE [33] was used to couple the momentum and continuity 

equations. A pressure-correction equation was used to allow the pressure field to be updated. It was derived from 

the sum of the mass conservation equations for liquid and gas, dividing each equation by the representative values 

of the corresponding density [10]. The global algorithm uses a predictor-corrector scheme [25]. The resolution 

steps follow, inside a loop, the following steps, until a certain tolerance is obtained: 

 

1. Solve implicitly (with FOU AND MUSCL) or explicitly (with FR) the momentum equations for 

velocities, using the pressure field of previous iteration; 

2. Solve implicitly the pressure-correction equation, using the new velocity fields; 

3. Update explicitly pressure, velocity and density fields, using the pressure variation obtained in the 

previous step; 

4. Solve implicitly (with FOU AND MUSCL) or explicitly (with FR) the continuity equations for 

volume fractions; 

5. Updates the variables and checks if the tolerance has been reached. 

 

We use the three diagonal matrix algorithm TDMA to solve the set of algebraic equations when the matrices 

are tridiagonal, i.e., solving the pressure problem, and a Gauss elimination solver for the momentum and continuity 

equations which are not tridiagonal.  

4  Results 

4.1 Convergency Study 

This case is a simple non-linear model, essentially the smooth and inviscid Burger´s problem [34], that can 

be interpreted as a particular case of Eq. (2) in which 𝛼𝑘𝜌𝑘 = 1 and the RHS = 0. We evaluate the convergence 

rates of the FR for the following orders of approximation: P1 (2nd order accuracy), P2 (3nd order) and P3 (4nd order) 

polynomials, similar to what has been done by Galindo et al. [24]. For comparison purposes, we have also included 

the results for the FOU and the MUSCL methods. We compute the L1 norm of the errors and the numerical 

convergence rates, for the smooth solution at 𝑡 = 0.5. The results are presented in Tab. 1. Similar as done in Galindo 

et al. [24], the simulations are made using sequentially refined meshes from 20 to 1,280 CVs. 

Table 1. Error and convergence rates for the L1-norm of error of Convergency Study. 

 FOU MUSCL FR-P1 FR-P2 FR-P3 

CVs EL1 RL1 EL1 RL1 EL1 RL1 EL1 RL1 EL1 RL1 

20 6.10E-03 - 3.16E-03 - 4.26E-03 - 1.17E-04 - 1.10E-05 - 

40 3.59E-03 0.765 9.86E-04 1.680 1.13E-03 1.909 1.64E-05 2.840 1.01E-06 3.451 

80 1.93E-03 0.894 3.15E-04 1.647 3.22E-04 1.816 2.24E-06 2.872 8.95E-08 3.493 

160 1.00E-03 0.943 9.11E-05 1.789 9.00E-05 1.839 2.98E-07 2.905 7.55E-09 3.568 

320 5.12E-04 0.971 2.53E-05 1.846 2.48E-05 1.863 3.90E-08 2.936 6.41E-10 3.558 

640 2.59E-04 0.985 6.79E-06 1.900 6.86E-06 1.852 5.02E-09 2.959 5.54E-11 3.533 

1,280 1.30E-04 0.993 2.39E-06 1.506 1.88E-06 1.868 6.38E-10 2.975 4.99E-12 3.470 

 

For all schemes tested, the convergence behavior is quite close to the formal asymptotic order of accuracy, 

except for the FR-P3 which as shown a small lost in accuracy for all meshes and the MUSCL scheme for the mesh 

with 1,280 CVs. 
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4.2 Discontinuity Moving in the Uniform Two-Phase Flow 

This case is a 1D horizontal pipe with 12 m long that has a diaphragm in its midsection and different left and 

the right states, according to Fig. 2, and based in [35]. The initial state and the state after 0.2 s are presented in the 

figure. The pipe is assumed to be adiabatic, and the frictional forces are neglected. The air void fraction (𝛼𝐺) is 

advected along the computational domain when the flow starts. 

 

Figure 2. Discontinuity Moving Problem.  

The solutions are obtained using 1,000 CVs for time t = 0.2 s. First, in Fig. 3, the result of the air void fraction 

(𝛼𝐺) is shown for FOU and MUSCL schemes. Unfortunately, as shown by Fig. 4, from the beginning of the 

simulation, the FR method, even with P1 and using 100 CVs, still presents spurious oscillations, probably due to 

some implementation issues.  

 

  Figure 3. Air void fraction (𝛼𝐺), t = 0.2 s, FOU and MUSCL. 
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Figure 4. Air void fraction (𝛼𝐺), t = 0.004 s, FR-P1 method. 

The results for the FOU and the MUSCL were satisfactory, the FR implementation still presents spurious 

oscillations. We are still investigating the source of the problems and, hopefully soon this issue will be addressed. 

5  Conclusions 

In present work, we have implemented a 1-D semi-implicit numerical algorithm based on the finite volume 

method and the flux reconstruction formulation. The mathematical model used was the two-fluid four-equation 

single-pressure model which was stabilized using an interfacial pressure difference term. The convective terms are 

evaluated applying first-order upwind (FOU) scheme, the MUSCL scheme and the FR method. For the 

convergency study (example 1), the FR method showed excellent behavior, however, for the Discontinuity Moving 

Problem (example 2), the FR method still presents some problems and it’s not working correctly. Beside the 

correction of these minor issues, in the near future, we intend to implement the FR successfully for more advanced 

problems and to include more physics by using the six-equation model to include thermal effects and to incorporate 

mass transfer terms and frictional forces.  

References 

[1] J. Su, “Flow Assurance of Deepwater Oil and Gas Production – A Review”. In: 22 ed. International Conference on 

Offshore Mechanics and Arctic Enginnering, 2003. 

[2] M. Jerez-Carrizales, J. E. Jaramillo and D. Fuentes, “Prediction of Multiphase Flow in Pipelines: Literature Review”. 

Ingeniería y Ciencia, v. 11, n. 22, pp. 213-233, 2015. 

[3] M. Ishii and T. Hibiki. Thermo-fluid dynamics of two-phase flow. 2 ed. Springer New York, 2011. 

[4] A. Prosperetti, and G. Tryggvason. Computational Methods for Multiphase Flow. Cambridge University Press, 2007. 

[5] I. Toumi, “An Upwind Numerical Method for Two-Fluid Two-Phase Flow Models”. Nuclear Science and Engineering, v. 

123, pp. 147–168, 1996. 

[6] H. Pokharna, M. Mori, and V. H. Ransom, “Regularization of Two-Phase Flow Models: A Comparison of Numerical and 

Differential Approaches”. Journal of Computational Physics, v. 134, pp. 282–295, 1997. 

[7] M. Pourgol-Mohammad. “Thermal–hydraulics system codes uncertainty assessment: A review of the methodologies”. 

Annals of Nuclear Energy, v. 36, pp. 1774–1786, 2009. 

[8] M. L. Bertodano, W. Fullmer, A. Clausse and V. H. Ransom. Two-Fluid Model Stability. Simulation and Chaos Springer 

International Publishing, Switzerland, 2017. 

[9] D. Bestion, “The Physical Closure Laws in the CATHARE code”. Nuclear Science and Engineering, v. 124, pp. 229–244, 

1990. 

[10] Z. Wang, J. Gong and C. Wu. “Numerical Simulation of One-Dimensional Two-Phase Flow Using a Pressure-Based 

Algorithm”. Numerical Heat Transfer, Part A, v. 68, p. 369–387, 2015. 

[11] H. Städtke. Gasdynamic Aspects of Two-Phase Flow: Hyperbolicity, Wave Propagation Phenomena, and Related 

Numerical Methods. Wiley-Vch, 2006. 

[12] B. van Leer. “Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's 

Method”. Journal of Computational Physics, v 32, pp. 101–136, 1979. 



F. Author, S. Author, T. Author (double-click to edit author field) 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  

Porto – Portugal, 13-16 November, 2023 

 

[13] Z. J. Wang. “Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation”. Journal of 

Journal of Computational Physics, v. 178, pp. 210, 2002. 

[14] Z. J. Wang and Y. Liu. “Spectral (finite) volume method for conservation laws on unstructured grids II: extension to 

two-dimensional scalar equation”. Journal of Computational Physics, v. 179, pp. 665–697, 2002. 

[15] Z. J. Wang and Y. Liu. “Spectral (finite) volume method for conservation laws on unstructured grids III: extension to 

one dimensional systems”. Journal of Scientific Computing, v. 20, pp. 137, 2004. 

[16] Z. J. Wang and Y. Liu. “The spectral difference method for the 2D Euler equations on unstructured grids”. AIAA Paper 

No. 2005, pp. 5112, 2005. 

[17] Z. J. Wang and Y. Liu. “Extension of the spectral volume method to high-order boundary representation”. Journal of 

Computational Physics, v. 211, pp. 154–178, 2006  

[18] Y. Liu, M. Vinokur, Z. J. Wang. “Discontinuous spectral difference method for conservation laws on unstructured 

grids”. In: Proceedings of the 3rd International Conference on Computational Fluid Dynamics, Toronto, Canada, July 12–16, 

2004. 

[19] H. T. Huynh. “Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods”. 

AIAA Conference Paper 2007, pp. 4079, 2007. 

[20] F. R. L. Contreras, D. K. E. Carvalho, G. Galindez-Ramirez and P. R. M. Lyra. “A non-linear finite volume method 

coupled with a modified higher order muscl-type method for the numerical simulation of two-phase flows in non-

homogeneous and non-isotropic oil reservoirs”. Computers & Mathematics with Applications, v. 92, pp. 120–133, 2021.  

[21] G. Galindez-Ramirez, D. K. E. Carvalho and P. R. M. Lyra. “Numerical simulation of 1-D oil and water displacements 

in petroleum reservoirs using the correction procedure via reconstruction (CPR) method”. Computational Geosciences, pp. 

1–15, 2019. 

[22] G. Galindez-Ramirez, F. R. L. Contreras, D. K. E. Carvalho and P. R. M. Lyra. “Numerical simulation of two-phase 

flows in 2-D petroleum reservoirs using a very high-order CPR method coupled to the MPFA-D finite volume scheme”. 

Journal of Petroleum Science and Engineering, 107220, 2020. 

[23] G. Galindez-Ramirez, F. R. L. Contreras, D. K. E. Carvalho and P. R. M. Lyra. “A very high-order flux reconstruction 

approach coupled to the MPFA-QL finite volume method for the numerical simulation of oil-water flows in 2D petroleum 

reservoirs”. Applied Mathematical Modelling, v. 106, pp. 799–821, 2022. 

[24] M. E. S. Galindo, I. V. Lacerda, G. Galindez-Ramirez, P. R. M. Lyra and D.K.E. Carvalho. “A very high order Flux 

Reconstruction (FR) method for the numerical simulation of 1-D compositional fluid flow model in petroleum reservoirs.” 

Geoenergy Science and Engineering, v. 229, 2023. 

[25] S. Morales-Ruiz, J. Rigola, I. Rodriguez and A. Oliva, “Numerical resolution of the liquid–vapour two-phase flow by 

means of the two-fluid model and a pressure-based method”. International Journal of Multiphase Flow, v. 43, pp. 118–130, 

2012. 

[26] The Julia Project. The Julia Language, V1.9.2, July 6, 2023. 

[27] S. Evje and T., “Flatten. Hybrid Flux-Splitting Schemes for a Common Two Fluid Model”. Journal of Computational 

Physics, v. 192, pp. 175–210, 2003. 

[28] C. R. Maliska. Transferência de Calor e Mecânica dos Fluídos Computacional. 2 ed. LTC, 2017. 

[29] S. Gottlieb and C.-W. Shu. “Total Variation Diminishing Runge-Kutta Schemes”. Mathematics of Computation, v. 67, n. 

221, pp. 73-85, 1998. 

[30] P. Wu, F. Chao, D. Wu, J. Shan and J. Gou, “Implementation and Comparison of High-Resolution Spatial Discretization 

Schemes for Solving Two-Fluid Seven-Equation Two-Pressure Model”. Science and Technology of Nuclear Installations, pp. 

1–14, 2017. 

[31] P. L. Roe. "Characteristic-based schemes for the Euler equations". Annu. Rev. Fluid Mech., v. 18, pp. 337–365, 1986. 

[32] B. Cockburn and C.-W. Shu. “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for 

Conservation Laws II: General Framework.” Mathematics of Computation, v. 52, n. 186, pp. 411–35, 1989. 

[33] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, 1980. 

[34] J. Hesthaven and T. Warburton. “Nodal discontinuous Galerkin methods”. Texts in Applied Mathematics, v. 54, 2008. 

[35] G. S. Yeom and K. S. Chang. “Flux-Based Wave Decomposition Scheme for an Isentropic Hyperbolic Two-Fluid 

Model”. Numer. Heat Transfer B, v. 59, pp. 288–318, 2011. 

Acknowledgements 

The authors would like to thank Petrobras for the financial support (project number 2023/00049-1).  
 


