
Online Learning of Data Streams: Evolving Fuzzy Predictor with Multi-
variable Gaussian Participatory Learning and Recursive Weighted Total
Least Squares

Fernanda P. S. Rodrigues1, Alisson Marques da Silva1

1Graduate Program in Mathematical and Computational Modeling
CEFET-MG - Federal Center of Education of Minas Gerais
fernandaprodrigues@yahoo.com, alisson@cefetmg.br

Abstract. This paper introduces an evolving fuzzy system called eFTLS (evolving Fuzzy with Multivariable Gaus-
sian Participatory Learning and Recursive Weighted Total Least Squares) constructed based on a non-supervised
recursive clustering algorithm with participatory learning and multivariate Gaussian membership functions. The
eFTLS uses a clustering algorithm to extract the first-order Takagi-Sugeno functional rules. The clustering algo-
rithm can add a new cluster, delete, merge, or update existing clusters. The clusters are created using a compatibility
measure and an alert mechanism. The compatibility measure is computed by Euclidian or Mahalanobis distance
according to the number of samples in the cluster. An age and population based-method excludes inactive clus-
ters. Redundant clusters are merged whenever there is a noticeable overlap between two clusters. An algorithm
of recursive weighted total least squares updates the consequent parameters. The performance of the eFTLS is
evaluated and compared with alternative state-of-the-art models in forecasting tasks. Computational experiments
and comparisons suggest that the eFTLS perform better or are similar to alternative models.

Keywords: Evolving Systems, Adaptive Models, Fuzzy Systems, Clustering Algorithms, Forecasting.

1 Introduction

The evolving systems are intelligent computational systems capable of tackling problems in dynamic and
non-stationary environments across various domains. These systems can adapt their structure and parameters con-
currently as new samples are continuously fed into the data stream [1]. An evolving system adjusts its structure
and parameters based on demand, tailored to process-specific characteristics and operational conditions [2]. Essen-
tially, evolving systems are characterized by their flexible structure and capacity for incremental and continuous
learning [3]. Throughout this learning process, data samples from a stream are processed just once before being
discarded, thereby mitigating memory consumption [4]. Alternatively, one could posit that the learning mechanism
relies solely on the current data sample.

In recent years, innovative approaches have emerged, leading to significant strides in evolving fuzzy sys-
tems, yielding practical and compelling solutions [1]. Nevertheless, there continues to be a mounting demand for
developing evolving fuzzy systems, with primary prospects tied to the addition, deletion, division, and union of
clusters, neurons, granules, leaves, or clouds. This adaptability ensures greater flexibility should the data dynamics
change [5]. Furthermore, an ongoing challenge lies in the quest for algorithms that exhibit high precision, superior
adaptability, autonomy, computational efficiency, and interpretability [1].

This study proposes a novel approach to evolving fuzzy systems for regression tasks, such as forecasting
and system identification. The proposed approach is founded on a modified version of the participatory learning
algorithm with multivariate Gaussian membership functions, as introduced by [6]. Unlike previous models, cluster
estimation employs Euclidean and Mahalanobis distance in the proposed approach. This implies that a sample is
attributed to either microcluster (Euclidean distance) or clusters (Mahalanobis distance). Using both distances aims
to circumvent the singularity issue when calculating the inverse of the cluster’s scatter matrix, which arises when
the cluster contains a small number of samples [5]. An exclusion method for clusters has been introduced based
on the concepts of age [7] and cluster population [8]. The elimination of rules is tied to the model’s capacity to
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discard obsolete knowledge when it becomes irrelevant. A new method for merging clusters has been implemented,
relying on the notable overlap between specific pairs of clusters. This approach seeks to enhance cluster merging
performance. Lastly, the consequent parameters are updated by a recursive weighted total least squares algorithm.

2 Proposed Model

The eFTLS (evolving Fuzzy with Multivariable Gaussian Participatory Learning and Recursive Weighted
Total Least Squares) employs an incremental learning algorithm to dynamically adapt and optimize the rules’
parameters while generating an output. All calculations are performed recursively, eliminating the necessity to
retain past data. The structure evolves by incorporating, combining, or excluding rules through the spatial input
data organization. The consequent parameters of the rules are continuously updated using the recursive weighted
total least squares algorithm.

The structure of the eFTLS comprises first-order Takagi-Sugeno functional rules, with their antecedents de-
rived from the clusters and represented by multivariable Gaussian membership functions. The fuzzy rules are
structured as follows:

Ri : If xt is Bi then yti = hti0 +
∑m
j=1 h

t
ijx

t
j

where Ri is the i-th rule, i is the index of fuzzy rules and clusters, xt is the current data sample described as
[xt1· · ·xtj · · · xtm]T , t is the current time step, j is the index of input variables, m is the number of input variables,
Bi is a multivariate Gaussian membership function with parameters derived from the center of the corresponding
cluster, yti is the consequent of the i-th rule (rule output), hti0 and htij are the parameters of the consequent of the
i-th rule, and c is the number of rules and clusters. A multivariate Gaussian membership function is described by:

f(x) = e−
1
2 (x

t−µt
i)(

∑t
i)

−1(xt−µt
i)

T

, (1)

in which µ is a vector containing the centers of the clusters (modal value), defined as [µt1. . . µti· · ·µtct ]
T , ct is

the number of clusters and microclusters, and
∑

is a positive definite symmetric matrix of size m × m. In the
proposed approach, similar to previous versions, the number of clusters equals the number of fuzzy rules. In other
words, each cluster represents a rule.

2.1 Model Initialization and Model Output

The first sample is utilized to create the initial cluster, with its center defined by the sample values. Sub-
sequently, a rule is generated, with the antecedent’s modal value serving as the cluster’s center. The consequent
parameters and the dispersion matrix are initialized to predefined values. The algorithm proceeds from the second
sample by selecting the distance measure. The output is obtained through a weighted average of the contributions
from each rule, as follows:

ŷt =

ct∑
i=1

τ ti y
t
i , (2)

where yti represents the consequent of the i-th rule, and τ ti are the normalized membership functions calculated at
step t as:

τ ti =
e
D(xt,µt

i
)∑ct

i=1 e
D(xt,µt

i
)
, (3)

in which xt is the current data sample, µti is the center of the i-th cluster,
∑ct

i is a dispersion matrix computed
using the Mahalanobis distance or an identity matrix utilizing the Euclidean distance. The term D(xt,µt

i)
can be

described as:

D(xt,µt
i)
= (xt − µti)(

t∑
i

)−1(xt − µti)
T . (4)
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2.2 Creating and Updating Clusters and Rules

The eFTLS structure is updated as new data are input. This process relies on a compatibility measure and an
alert mechanism. The compatibility measure, denoted as γti , lies within the range [0, 1], representing the extent of
compatibility between the new sample and each cluster. In simpler terms, this measure computes the compatibility
between the current sample xt and the model’s existing knowledge, represented by the centers of existing clusters
[6]:

γti = f(xt, µti) = e−
1
2D(xt,µt

i), (5)

in which D(xt, µti) is the distance metric (Euclidean or Mahalanobis) between the sample and the center of cluster
i at time t. The cluster structure is adjusted based on the number of samples in each cluster, with a maximum limit
set by the user as Nmax.

If the number of samples in cluster i, denoted as ni, is less than Nmax, Euclidean distances are calculated
using an identity matrix

∑t
i of size m ×m, where m is the dimensionality of the data. Otherwise, Mahalanobis

distance is computed, utilizing the covariance matrix
∑t
i specific to cluster i at time t [5]. The compatibility

measure threshold Γmax for Euclidean distance calculations is determined by Γmax = e−mini(
F

2ω )2 , where F =
max(xi)−min(xi) and ω represents the window size. For Mahalanobis distance, Γmax = e−

1
2χ

2
m,α in which χ2

m,α

follows a Chi-squared distribution with m degrees of freedom and α as a one-sided confidence interval.
The alert mechanism indicates when the cluster structure inadequately represents the current system knowl-

edge, requiring revision [6]. The arousal index, ati ∈ [0,1], is obtained for each cluster as new samples are input.
To compute the arousal index, it is necessary to determine the significance level α and the count of threshold
violations. The value of α can be automatically calculated, utilizing the window size ω, as demonstrated in [6]:

α =


0.01, if ω ≥ 100

0.05, if 20 ≤ ω < 100

0.1, if 10 ≤ ω < 20.

(6)

The value zti represents the number of threshold violations and is computed as:

zti =

{∑ω−1
k=0 rt−ki , t > ω

0, otherwise,
(7)

where rti is defined by:

rti =


0, D(xt, µti) < χ2

m,α (for Mahalanobis distance)

0, D(xt,µt
i)
< mini

(
max(xi)−min(xi)

2ω

)2

(for Euclidean distance)

1, otherwise.

(8)

The cumulative probability, denoted as V t, is employed to estimate the arousal index, represented as ati ∈
[0, 1], where ati = p(V t < z), and p(V t = z) follows a binomial distribution. The probability function of
p(V t = z) is defined as per [6]:

p(V t = z) =

{
w!

z!(w−z)!α
z(1− α)ω−z, z = 0, ..., ω

0, otherwise.
(9)

A new cluster is established if the compatibility measures γti for the current sample is lower than its respective
threshold Γmax for all clusters. The alert index ati of the cluster with the highest compatibility (i) surpasses its
respective threshold Γa. Specifically, if γti < Γmax for all i = 1, ..., ct and ati > Γa for i = maxi(γ

t
i ), a new

cluster is created.
The current number of clusters, denoted as ct, is updated after creation. The number of samples in the newly

formed cluster is initialized to ntct = 1, and the center of the new cluster is set as µtct = xt. The dispersion matrix
for this cluster is initialized as

∑t
ct =

∑
init. Subsequently, the consequent parameters htct are determined, as

illustrated by eq. (10), and a new rule is established.

htct =

∑ct

i=1 h
t
iγ
t
i∑ct

i=1 γ
t
i

. (10)
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Alternatively, if γti > Γmax for all i = 1, . . . , ct or ati < Γa for i = maxi(γ
t
i ), then the sample is assigned to

the most compatible cluster. The center of this cluster is updated using the following formula:

µt+1
i = µti + Sti (x

t − µti), (11)

Here, Sti∗ is computed as:

Sti = λ(γti )
1−ati∗ , (12)

where λ represents the learning rate. The value of λ is usually defined between 10−1 and 10−5 [6].

2.3 Merging of the Clusters and Rules

In the proposed approach, clusters are merged whenever a notable overlap between two clusters is detected
[9]. More formally, if two clusters i and i are sufficiently close, meaning that their centers, µi and µi, satisfy the
condition:

||µti∗ − µti|| ≤ ρ (i = 1...ct e i ̸= i∗), (13)

in which ρ is the threshold for cluster merging. The center of the new cluster µti∗∪i is determined using a weighted
average method and calculated as:

µti∗∪i = µti −
nti

nti + nti
(µti∗ − µti), (14)

where nti represents the number of samples in the i-th cluster, and the same applies to nti. The new cluster i∪ i is
positioned between clusters i∗ and i, its exact location depending on the sample count of the merged clusters. The
dispersion matrix for the resulting cluster is updated and defined as:

t∑
i∗∪i

=

∑t
i∗ +

∑t
i

2
. (15)

The consequent parameters for the newly generated rule are obtained by hti∗∪i=
ht
iγ

t
i+h

t
iγ

ti
γt
i∗+γ

t
i

. The sample

count of the new cluster is the sum of the sample counts of the two merged clusters, i.e., nti∗∪i = nti+nti∗ . Finally,
the cluster count and indices are updated.

2.4 Exclusion of the Clusters and Rules

The proposed approach for cluster elimination is founded on the concepts of age and population [7, 8]. In
this work, age determines the time interval a cluster remains inactive, meaning its membership degree is zero. The
age of a cluster is calculated by ageti = t−Ai, where i is the index of the cluster, Ai is the time instance when the
i-th cluster was last activated, and t represents the current time step. For each sample xt, the index of the oldest
inactive cluster i is found. The oldest inactive cluster is eliminated if aget

i
> ω, where aget

i
denotes the period of

inactivity for the cluster indexed by i, and ω is the window size.
Another method employed for cluster elimination is based on the population, which denotes the number of

samples nti assigned to a cluster [8]. The population of a cluster is monitored, and if it falls below 1% of the total
samples at time t, the cluster is eliminated. Mathematically, a cluster indexed by i is removed if nt

i
/t < 0.01.

For each new sample xt, the index of the oldest inactive cluster i is identified to eliminate a cluster. The
cluster indexed by i is eliminated if the following condition holds aget

i
> ω and nt

i
/t < 0.01.

Following removing a cluster, the cluster index and count are updated. Combining these two mechanisms
ensures that newly formed clusters are not prematurely removed.

2.5 Update of Consequent Parameters

The eFTLS uses the Recursive Weighted Total Least Squares (RWTLS) algorithm to update the consequent
parameters [10]. The commonly used parameter update algorithms optimize the error concerning the output.
However, real-world data often contains input noise. Therefore, RWTS is proposed to mitigate these anomalies,
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aiming to obtain unbiased parameter estimates in the presence of noisy inputs and outputs [11]. The formula for
parameter updating is given by:

hti =
gtiu

t
i − (uti1x

t
1 + ...+ utimxtm)

uti0
, (16)

in which m is the dimension of the input space, uti is the smallest eigenvector of the dispersion matrix, gti is a point
through which the regression model passes, and gtiu

t
i is obtained as gtiu

t
i = uti0y

t + uti1x
t
1 + ...+ utimxtm.

However, before that, the regressor vector r̂ti and the weighted mean vector νtri of the output and inputs of
the current sample are updated. Specifically,

r̂ti = rti − νtri , in which νtri =
(rti)

T τ ti
1T τ ti

, (17)

where τ ti represents the normalized membership functions, and rti is obtained as:

ri
t = [yt|xt]. (18)

Next, the inverse of the weighted Hessian matrix Pi is updated by:

P ti = I − Lt−1(r̂ti)
TP t−1

i , (19)

in which Lt−1
i is obtained by:

Lt−1
i =

P t−1
i r̂ti

1
τt
i
+ (r̂ti)

TP t−1
i r̂ti

. (20)

The unit normal vector to the affine hyperplane of rule i is then computed as:

uti =
√
Qi

(
rti − r̂ti ,

)
, (21)

uti =
uti

||uti||2
(22)

in which Qi is the weighting diagonal matrix of cluster i. The consequent parameters are initialized as h0
i =

[y0 0 ... 0] and I is an identity matrix of size m+ 1 x m+ 1.

3 Computational Experiments

In this section, the eFTLS is evaluated in forecasting problems. The results obtained from eFTLS are com-
pared with three alternative evolving systems: eFCE [3], eMG [6], and eOGS [12], with code provided in Matlab
by their respective authors. The proposed model itself was developed using Matlab.

The datasets are split into two subsets with 50% of the samples each. The first subset is used to find the best
values of parameters, whereas the second is used for performance evaluation. The best parameters were obtained
through an exhaustive search. The parameters that achieved the lowest forecasting error in the first subset are used
to evaluate the models’ performance in the second subset. Table 1 shows the range of parameters and the best
values. All data has been normalized to the [0,1] interval for all experiments.

The performance of the models is assessed for all samples in the dataset using the Root Mean Square Error
(RMSE) and the Non-Dimensional Error Index (NDEI).

3.1 Death Valley

This section evaluates models predicting average temperature in Death Valley1. The meteorological dataset
from Death Valley comprises 1306 observations, recording monthly average temperatures from 1901 to 2009,
measured in degrees Celsius. The objective is to forecast the monthly average temperature one step ahead. [13]
and [14] suggest using the first twelve lagged values of the series as inputs. The model for this dataset is defined
as follows: ŷt = f(yt−1, ..., yt−11, yt−12).

1https://www.nps.gov/deva/planyourvisit/weather.htm
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Table 1. User-defined parameters used in the experiments.

Models Parameter Step Sec. 3.1 Sec. Sec.3.2

eFCE λ = 0.05 (fixo) 0.05 0.05

w = 5, ..., 55 5.00 5 50∑
init= (10−1, ..., 10−4).Im 1.00 10−1.I12 10−2.I9

Nmax = 0, ..., 78 1.00 5 45

ρ = 0.10, ..., 0.40 0.15 0.25 0.25

eFTLS λ = 0.05 (fixo) 0.05 0.05

w = 5, ..., 55 5.00 10 5∑
init= (10−1, ..., 10−4).Im 1.00 10−1.I12 10−1.I9

Nmax = 0, ..., 78 1.00 7 11

ρ = 0.10, ..., 0.40 0.15 0.10 0.25

eMG λ = 0.05 (fixo) 0.05 0.05

w = 5, ..., 55 5.00 5 10∑
init=(10−1, ..., 10−4).Im 1.00 10−1.I12 10−1.I9

α = 0.01 (fixo) 0.01 0.01

eOGS ψ = 2 (fixo) 2 2

α = 0.1, ..., 0.9 0.10 0.9 0.1

v = 50, ..., 2950 100 250 150

ω = 0.01 (fixed) 0.01 0.01

Table 2 illustrates the results obtained in temperature prediction for Death Valley. The best performance in
terms of RMSE and NDEI was achieved by eFCE, followed by eMG, eFTLS, and eOGS. The results of the eFCE,
eMG, and eFTLS models are comparable.

Table 2. Performance in predicting Death Valley.

Models RMSE NDEI

eFCE 0.0508 0.2164

eMG 0.0596 0.2307

eFTLS 0.0597 0.2389

eOGS 0.0785 0.3056

3.2 Bicycle Rental

This section addresses the bicycle rental prediction problem. In bike-sharing systems, users can rent and re-
turn bicycles at various locations within the city. The Capital Bike Sharing dataset contains 731 samples, represent-
ing information collected over two years. These bike-sharing lending system data were collected in Washington,
D.C.. The objective is to forecast the number of rented bicycles using 9 input variables: station (xt1), month (xt2),
holiday (xt3), day of the week (xt4), weather condition (xt5), temperature (xt6), apparent temperature (xt7), humidity
(xt8), and wind speed (xt9) [14]. The model for this dataset is described as: ŷt = f(xt1, x

t
2, ..., x

t
8, x

t
9).

The RMSE and NDEI results obtained in the bicycle rental prediction are displayed in Table 3. The eFTLS
achieved the best performance, followed by eMG, eFCE, and eOGS.

4 Conclusion

This manuscript introduced a novel approach for constructing evolving fuzzy models based on a participatory
clustering algorithm and multivariate Gaussian membership functions. The structure of the proposed method
evolves through the inclusion, exclusion, merging, and updating of clusters and rules. Creating a new cluster/rule
employs a similarity measure based on Euclidean distance for microclusters and Mahalanobis distance for clusters.
Using these two distances resolves the issue of calculating the inverse of the scatter matrix for clusters with few
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Table 3. Performance in predicting bicycle rental.

Models RMSE NDEI

eFTLS 0.1068 0.4794

eMG 0.1096 0.4916

eFCE 0.1284 0.5761

eOGS 0.1376 0.5936

samples. The exclusion of clusters and rules draws inspiration from the concepts of age and population, enabling
the removal of inactive or poorly represented clusters. The merging mechanism is based on the notable overlap of
two clusters. The recursive weighted total least squares algorithm updates the consequent parameters.

The performance of the proposed model was evaluated and compared to state-of-the-art evolving models
using forecasting tasks. Computational results indicate that the proposed models exhibit superior or comparable
performance compared to alternative models.

Future work shall address new algorithms to adjust the consequent parameters and generalization of the model
for problems with multiple outputs.
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