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Abstract. The development of Physics Informed Neural Networks (PINNs) has been receiving considerable atten-
tion lately. PINNs incorporate the partial derivative equations that describe the physical behavior of a natural or
engineered system in the loss functions of neural networks. This model family represents a new paradigm for the
solutions of PDEs for both forward and inverse problems. Different frameworks that aim to facilitate the produc-
tion and training of such models are currently being provided, and Modulus is one of the available frameworks that
has been gaining ground recently. In any case, despite the capability of these packages to assist the construction of
PINNs, it is important to consider a viable data analysis strategy for the experiments. This work presents the Mod-
ulus Aggregator tool, which is developed to support the data analysis expert in the hyperparameter configuration
of multiple models produced, with a strategy for the aggregation of results. The aggregation tool complements the
TensorBoard visualization toolkit and takes advantage of the native directory structure of a Modulus experiment.
The experiment of a wave propagation shows the potential to assist the analysis of results and the possibility of
automating the extraction and filtering activities of trained models in a scenario of a significant amount of data.
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1 Introduction

The growing popularity of Neural Networks (NNs) brought undeniable advances in a considerable wide
range of different areas and problems in which traditional Machine Learning (ML) techniques are not able to settle
successfully, such as computer vision [1], voice recognition [2], automated translation [3] and many others. Nev-
ertheless, for scientific applications such as fluid dynamics, wave propagation, and quantum mechanics, the need
to model the underlying physics with NNs without the constraints of high-cost simulations to produce synthetic
data and sparse field data, a new model family has begun to draw attention.

The Physics Informed Neural Networks (PINNs) are NNs aimed at solving Partial Differential Equations
(PDEs) that characterize forward and inverse problems by coupling the governing equations of a physical system
in their loss function. Many software frameworks are being developed to facilitate the design, training, and im-
plementation of PINNs and have become available for specialists. One of the frameworks that have been gaining
ground, especially for complex applications, is the NVIDIA Modulus 1, mainly because of its robust toolset for
PINNs implementation.

Despite the interesting built-in functionalities to support PINNs implementation, there is limited support
to analyze and manage the results of several models that could be potentially produced in a batch of different
experiments. This necessity led to the development of the Modulus Aggregator, a tool integrated with the Modulus
framework built to complement the functionalities related to data processing and analysis to provide flexibility in
the comparison of multiple models generated in a given experiment. This paper presents the Modulus Aggregator

1https://developer.nvidia.com/modulus
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as an alternative to assist Modulus users in the data analysis of results, with a practical evaluation of the tool in a
seismic wave propagation experiment.

The remainder of this paper is organized as follows. Section 2 defines the problem solved by PINNs. Section
3 briefly describes the NVIDIA Modulus Framework. Section 4 presents the Modulus Aggregator and defines its
software architecture. Section 5 details the experiment for evaluating the aggregation tool. Section 6 summarizes
our main findings.

2 Physics Informed Neural Networks

Consider the problem of solving the following equations:

L(u(t; x);λ) = f(t; x) x ∈ Ω, t ∈ [0, T ] (1)

B(u(t; x)) = g(t; x) x ∈ ∂Ω (2)

where the equations 1 and 2 are defined in Ω ∈ RD domain, with its boundary in ∂Ω. The solution u(t; x)
depends on t ∈ [0, T ], which represents the temporal variable, and x = [x1, x2, ..., xD], that constitutes the spatial
variable defined in Ω. Moreover, L represents the differential (non-linear) operator of the problem, λ the physical
parameters, and f the function related to the problem’s data. Finally, B corresponds to the operator representing
the initial and boundary conditions (for example, Dirichlet, Robin or periodic) and g is the specified function in
the boundary.

The trained PINN approximates u from a set of parameters θ (representing the neural network-related param-
eters in a forward problem, and the physical related λ parameters in a inverse problem) obtained through training,
so that (uθ(t; x)− u(t; x) = R(x, t, θ)). In this case, R represents the residual between the approximated and the
real solutions, which must be minimized.

Therefore, the PINN must minimize the following loss function:

L(θ) = wdLd(θ) + wuLu(θ) (3)

where Lu represents the loss function related to the PDE’s approximation that aims at minimizing R(x, t, θ),
and Lu corresponds to the loss function related to the problem’s data, whether they are derived from initial or
boundary conditions, or even from collected data. The weights wd and wu balance the total loss function, and θ
are the network parameters. In this way, the objective is to find θ∗ = argmin(L(θ)), where θ∗ minimizes the loss
function defined in equation 3.

There are several software packages to facilitate the generation and training of PINNs. These packages take
advantage of the great computational efficiency of standard optimization methods such as automatic differentiation
by backpropagation that are implemented in deep neural networks frameworks like TensorFlow [4], Keras [5] and
PyTorch [6]. In that sense, it is worth mentioning PINNs frameworks such as DeepXDE [7], SciANN [8] and
NeuroDiffEQ [9], that, despite their popularity for designing and training PINNs, do not offer a consistent set of
features and network architectures to support solving problems defined in more complex geometrical domains and
to analyze experiment results natively via TensorBoard for instance, as Modulus does.

3 NVIDIA Modulus

The NVIDIA Modulus, previously known as SimNet [10], is a PINN development framework that aims to of-
fer both academy and industry a solid option for designing and training physics-based neural networks. It presents
itself as a robust toolset for implementing PINNs. Modulus supports advanced Neural Networks architectures and
provides for the definition and parameterization of complex geometries by constructive solid geometry (CSG) and
Tessellated geometry (TSG) modules. In NVIDIA Modulus documentation page 2 it is possible to access different

2https://docs.nvidia.com/deeplearning/modulus/
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kinds of resources, such as the Modulus documentation, Modulus code examples, the Modulus GitHub, and also a
self-paced course to learn more details on how to design train PINNs on the framework.

Despite advanced available functionalities, there are some limitations regarding model results comparison
[11]. For example, the TensorBoard package, which is totally integrated with Modulus, provides the user with
interesting features to visually analyze the progress of trained PINNs during different training phases. However, it
lacks some features to aggregate results on demand and to compare the models with previously set metrics quan-
titatively. Accessing results data as data frames through the TensorBoard Dataframe API is the only possibility.
Nevertheless, it is required that the user uploads the whole Modulus experiment in the TensorBoard.dev platform,
which publicizes the experiment results. Uploading the results is not feasible in many research projects and in-
dustry development applications scenarios. With this, it is interesting that these limitations could be mapped in
an adequately integrated software package that could be directly used with Modulus. That is the idea behind the
development of the Modulus Aggregator.

4 Modulus Aggregator

The Modulus Aggregator is a tool developed to assist the data analysis expert in the hyperparameter con-
figuration in a scenario of multiple trained models in a Modulus Experiment. This is conducted with a strategy
to aggregate results to complement some of the mapped limitations found on the Modulus framework related to
multiple models’ quantitative results analysis process. It also takes advantage of the native directory structure of
a Modulus experiment to minimally affect the generated artifacts, referred to as the multiple trained PINNs. This
software is developed as an open-source Python package that can be installed in a Modulus development envi-
ronment for aggregation and exportation of data relative to different generated models produced in an experiment
repository.

The Modulus Aggregator software architecture, shown in Figure 1, is divided into four main modules that play
particular roles in the experiment data aggregation. The first module is responsible for capturing the data results of
the Modulus experiment repository by accessing its particular directory structure to capture and register the results.
Next, the Post-Processing module is called to organize all the results related, for example, to different chosen
metrics and optionally different record frequencies for validation, training, and monitoring related quantities (it
is possible to customize the record frequencies for each registered metric in Modulus). Then, the Aggregation of
Results module takes place, aiming to put together all the post-processed results in a structure that can be properly
extracted. Finally, the Data Extraction module extracts the aggregated data to a local directory of the experiment
repository in order for it to be accessed later by the user with a Python Pandas-friendly format.

Figure 1. Modulus Aggregator’s Software Architecture.

The Modulus Aggregator is built as a light package to extract results of the experiment without affecting the
Modulus experimentation framework. The package provides a set of CLI (Command Line Interface) commands
to aggregate and extract the results of the experiments. The commands are available at the Modulus Aggregator 3

GitHub. These commands can also be used in a script-like program to automate the aggregation and extraction of
the results during the Modulus experiment. This is the framework used to evaluate the tool during an experiment
that produced considerable data, further detailed in Section 5.

3https://github.com/mthlimao/modulus_aggregator
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5 Experimental Evaluation

The Modulus Aggregator was used in a scenario of multiple models generation and a considerable amount of
data in order for the tool to be evaluated in its capacity to assist the data analyst to better orient the hyperparameter
configuration. With a view to provide options to a better analysis and to also allow the extraction and filtration of
models, the aggregator tool was used complementing some of the features already available in TensorBoard. The
experiment was conducted in the HPC environment provided by the Santos Dumont supercomputer 4.

5.1 Modulus Experiment

The conducted experiment is a wave propagation in a 2D domain with a Ricker source. The physical and
configuration details of the problem are further addressed in 5. For this experiment, the multirun mode available
in Modulus is employed for the training. This mode allows the user to run the experiment routine with multiple
combinations of hyperparameters with only one command. Values for the number of hidden layers (2, 3, 4, 5, and
6), layers size (128, 256, and 512), optimizers (Adam, Sgd and Rmsprop) and learning rate (1e−05, 3e−05, 1e−04,
3e−04 e 1e−03) are varied. With this parameterization, 225 different models were generated, using a storage space
of 8.78 GB. The experiment took approximately 120 hours to be concluded. No parallelization technique is used
in this particular study. The exact command to run the experiment is in Figure 2.

$ py thon3 wave 2d . py −m a r c h . f u l l y c o n n e c t e d . l a y e r s i z e =128 ,256 ,512
a r c h . f u l l y c o n n e c t e d . n r l a y e r s = 2 , 3 , 4 , 5 , 6 o p t i m i z e r =sgd , adam , rmsprop
o p t i m i z e r . l r = 0 . 0 0 1 , 0 . 0 0 0 3 , 0 . 0 0 0 1 , 0 . 0 0 0 0 3 , 0 . 0 0 0 0 1

Figure 2. Command line for the Wave propagation experiment.

5.2 The Use of Modulus Aggregator

The tool is used in model filtering by a set of pre-fixed metrics of interest to reduce the amount of data to be
analyzed. In this scenario, a simple Python script is utilized to define such metrics, filter the models and, at last,
save the best models for later analysis. Figure 3 illustrates the utilization scheme of the aggregation tool. For the
problem at hand, the following metrics for filtering are chosen:

• Train/loss aggregated
• Train/loss c
• Train/loss open boundary
• Train/loss u
• Train/loss wave equation
• Validators/VAL 0012/l2 relative error u
• Validators/Velocity/l2 relative error c

Figure 3. Utilization scheme of Modulus Aggregator.

4https://sdumont.lncc.br
5https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/user_guide/foundational/2d_wave

_equation
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Table 1. Best filtered models.

Hyper-parameters Best Metric

A (128, 5, 0.001, adam) Train/loss aggregated, Train/loss u

B (128, 6, 0.0001, sgd) Train/loss open boundary

C (256, 6, 0.001, adam) Train/loss c, Validators/Velocity/l2 relative error c

D (512, 5, 0.0003, adam) Validators/VAL 0012/l2 relative error u

E (512, 5, 0.00003, sgd) Train/loss wave equation

This way, only the best models for each of the chosen metrics are selected. The filtering process can reduce
the space of analysis from a total of 225 models to only five. This represents a reduction of approximately 99.2% of
the storage space to be locally analyzed (originally from 8.78Gb to 70.5 Mb), resulting in a much cleaner analysis
environment in TensorBoard, for example, of the validation errors as the Figure 4 shows.

(a) Plots with no models filtering. (b) Plots with models filtering.

Figure 4. Validation errors plots in Tensorboard before and after filtering with Modulus Aggregator.

5.3 Results Analysis

Table 1 presents the models, their associated hyperparameters (values of layer size, number of layers, initial
learning rate, and optimizer, respectively), and the metrics that filtered each of the listed models. All the results
analysis studies are then conducted with the aggregated results databases produced by the Modulus Aggregator
tool, which are stored in the multirun/ and multirun filtered/ directories, as illustrated in Figure 3.

One can note in Table 1 that two of the five selected models (A and C) simultaneously have the best per-
formance for two metrics. Besides, three of the five models use the Adam optimizer (A, C and D) in the training.
Based on this, conducting an analysis of results via TensorBoard is possible. Figure 5 shows the temporal evolution
for training (Train/loss c and Train/loss u) and validation (Validators/Velocity/l2 relative error c) metrics.

Figure 5. Temporal evolution for training and validation metrics.

It is possible to see in Figure 5 that, mainly for the plots related to the Train/loss u e Validators/Veloci-
ty/l2 relative error c, three of the five models (the ones trained with the Adam optimizer) present better perfor-
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mance, including a downward trend, for the error metrics related to u. This behavior is also observed for all other
metrics, including the validation metrics (excluding Train/loss open boundary and Train/loss wave equation).

It is also possible to notice that these three models present different numbers of layers (5 and 6) and layer
sizes (128, 256, and 512). This way, in this study, it is opted for the simplest possible architecture (5 layers and
128 neurons) for analyzing the influence of other hyperparameters in the validation metrics. In this sense, an
investigation is carried out for the validation errors related to the last training step for the models. These metrics
refer to the validation errors measured for the different time instants simulated in Devito [12] and utilized as
references for ascertaining the quality of the trained PINNs. This study aims to evaluate which learning rate values
could be used in its adjustment to train new models.

Figure 6 shows the variation of the validation errors for u based on the different learning rate values, with the
simplest fixed architecture, using Adam optimizer. The produced plot indicated clearly that values of learning rate
equal or smaller than 0.0001 entail a decreased performance for the validation errors for u. This can indicate to the
analyst that greater learning rate values could preferably be employed for training new PINNs with Modulus.

Figure 6. Validation Errors for u based on different values of learning rate for the fixed network architecture of 5
layers and 128 neurons with Adam optimizer.

Figure 7 illustrates the same type of plot produced with the validation errors for u and for the last training step
based on the different optimizers, also with the same network architecture. For this second analysis, the learning
rate value is fixed to 0.001. For this architecture and learning rate, the Adam optimizer also presents the best
performance. In generating new models, adopting the Adam optimizer would be a justifiable option.

Figure 7. Validation Errors for u based on different optimizers, with a fixed network architecture of 5 layers and
128 neurons with learning rate equal to 0.001.

6 Conclusions

The Modulus Aggregator is developed as a library to be installed in the native development environment of
the framework Modulus, and it acts as a CLI command package that allows the user to extract and aggregate the
experiment results, mainly for a scenario of multiple model training. This paper shows that the aggregation tool
was capable of helping in the analysis of results by reducing the hyperparameter space by aggregating data results
and filtering the best models based on a set of pre-fixed metrics of interest. This way, the tool not only adds the
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potential to increase the efficiency of the analyses of model results in TensorBoard, but it also adds the potential to
reduce the physical data storage. It also can contribute to the automation of such a process, which is currently not
possible with the exclusive use of the TensorFlow data frame API, given the necessity of publicizing the developed
experiment, which is a complicated process to automate and is simply unfeasible in specific scenarios of research
and development. There are still some limitations to be handled, so the tool can add more flexibility to the data
extraction process. For instance, a feature that automatically filters models based on a set of metrics is perfectly
feasible. Also, the possibility of handling metadata related to the use of computational resources, like memory and
CPU, can further enrich an investigation by the analyst in a particular experiment.
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