
MODELLING MR DAMPERS UNDER NON-HARMONIC EXCITATIONS
THROUGH LOGISTIC CURVE MODELS

Leonardo da Costa Rodrigues Ferreira1, Marcus V. G. de Morais2, Davi Matias Dutra da Silva 2

1Depto. Automotive Engineering, University of Brası́lia, Campus Gama
Brası́lia/DF
leonardo.costa@aluno.unb.br
2Depto. Mechanical Engineering, University of Brasilia, Campus Darcy
mvmorais@unb.br, davimatiasbra@gmail.com
Brası́lia/DF

Abstract. The present work proposes modifications for a MR damper Sigmoid-curve-based mathematical model
in the literature to expand the range of conditions in which it can be employed, such as white noise excitations,
as well as increase its accuracy. The proposed formulation is compared to Bingham and Bouc-wen models, two
formulations with widespread use for MR dampers. The Sigmoid model addressed some issues with prior mod-
els, such as their inaccuracy in situations where the current or excitation were continuously varied. However, this
articles demonstrates that the model has stability issues, including instances of numerical divergence. This article
proposes tweaks that eliminate the issue. It also further proposes an expanded model with more parameters based
on the generalized logistic curve, evaluating if a better agreement between the numerical model and the experi-
mental data is possible. The results are compared according to the sum of the absolute difference between the
experimental and predicted force on steady-state conditions, where a lower value means a better agreement. The
new model decreased the disagreement between the theoretical and numerical models by 8,6%. The modifications
to address the numerical divergence were a success.
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1 Introduction

Semi-active dampers are of interest to the automotive industry due to their good compromise between per-
formance and cost, with the magneto-rheological (MR) dampers often used for this purpose due to their reliability
(Soliman [1]). A few key characteristics that differentiate it from a normal damper are its strong non-linearity with
respect to speed and its hysteretic behavior. These differences make numerical simulations of the damper complex,
with many different models being used for modeling its behavior.

The Bingham model and its variants are often used to model MR dampers (Soltane et al [2], Fujitani et al [3],
Sharma and Sharma [4]). As put by Rossi et al [5], the main draw point is that it’s a reasonable approximation while
being simple to model. There have been many variations of the model developed over the years, with Santade [6]
having many examples of such cases. The Bouc-wen model has also been extensively used to model MR dampers
(Ismail et al [7], Loh et al [8], Xiaomin et al [9], Zhu et al [10], Weber [11]), and according to Rossi et al [5]
its main strength is modeling hysteretic behavior, with the drawback of having more parameters. Many examples
of Bouc-wen models in the literature can be found in Kowk et al [12]. Lastly, the Sigmoid-inspired model has
seen use (Wang et al (2001) [13], Silva et al [14], Ji et al [15], Yu et al [16]) due to its good agreement with the
theoretical data, but it has the most parameters out of all these models.

In order to match the numerical model to a physical damper, it’s necessary to perform a parametric identifi-
cation on experimental data. For models with a high number of parameters, meta-heuristics algorithms are usually
employed. The genetic algorithm (GA) is commonly used (Kowk et al [12], Yu et al [17], Zhu et al [10]) due to its
capacity to converge to globally optimal solutions for non-linear problems with many parameters.

This work aims to propose two modifications to the Sigmoid-based rheological model proposed by Wang et
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al (2004) [18]. The first is a modification to modify the damper behavior under non-harmonic excitations with
non-ideal boundary conditions. The forces of the old and new proposed formulations are compared in different
circumstances, demonstrating they’re equivalent in test bench conditions but different otherwise, with the new
proposal being more robust. The second is a modification to increase the model’s precision. To evaluate the
performance of the proposed extended model, the parametric identification of a MR damper for four different
rheological models is performed, comparing their effectiveness at matching experimental data collected in a prior
work by Silva et al [14]. Because of its desirable qualities and high presence in the literature, the parametric
identification is done by means of a GA. The coefficients for each of the proposed models are found, as well as the
adequacy of the fit.

2 Rheological models

2.1 Bingham body

There are many Bingham-inspired models in the literature, with the Bingham body model variant chosen over
the simplest one due to the addition of a stiffness element. The Bingham body is a model that combines a Bingham
plastic model in series with a linear spring element. The Bingham plastic is modeled as a damper in parallel with
a dry friction element. The model is in Fig. (1).

Figure 1. Bingham model.

The equations for the Bingham body model are given in Sapinski and Filus [19] apud Santade [6] as eq. (1).{
F = K(U2 − U1) + f0 if |F | ≤ Fc

F = CU̇2 + Fc + f0 if |F | > Fc

(1)

where U is the displacement of the terminals, K is the linear spring constant, C is the linear damper constant, f0

is a residual force, Fc is the dry friction force and F is the resulting damper force.

2.2 Bouc-wen

The Bouc-wen model is explained in Santade [6] as a linear stiffness element, a linear damper element, and
a hysteresis Bouc-wen element, all in parallel, shown in Fig. (2). Kwok et al [12] gives the formulation for the

Figure 2. Bouc-wen model.

forces in a non-symmetric MR damper as well as the hysteretic component as such:

F = cẋ+ kx+ αz − f0 (2)
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ż = (δ − γ|ż|n − βż|ż|n−1)(ẋ− µ sgn(x)) (3)

where x is the displacement U, n, α, δ, γ, β and µ are the hysteresis loop constants, z is the hysteresis variable, f0

is a residual force and c and k are the linear damping and stiffness of the model. The formulation used in Kwok et
al [12] is chosen because it allows for force asymmetries to be accounted for.

Additionally, Erlicher and Point [20] report additional constraints that guarantee the model obeys the second
law of thermodynamics. These conditions in eq. (4) will be respected in the parametric identification.


n > 0

β > 0

−β ≤ γ ≤ β

(4)

2.3 Wang’s model

Wang’s model is a Sigmoid-curve-based model first described by Wang et al (2001) [13], with further devel-
opments to account for asymmetries described by Wang et al (2004) [18]. The final model described in the latter
article is the one in eqs. (5,6,8,7).

F (ẋ) = ft
1− eF1(ẋ)

1 + eF1(ẋ)
(1− k5)(1 + F2(ẋ)) (5)

ft = f0(1 + ea1vm)

(
1 +

k2
1 + e−a2(i+I0)

− k2
1 + e−a2(I0)

)
(6)

F2(ẋ) = |(ẋ)|e−a4vm

(
1 + sgn2(ẋ)

2
k1c +

1− sgn2(ẋ)

2
k1e

)
(7)

F1(ẋ) = − a0
1 + k0vm

(
(ẋ) + sgn(ẍ)k4vm(1 +

k3
1 + e−a3(i+I1)

− k3
1 + e−a3(I1)

) + k6vm

)
(8)

where a0, a1, a2, a3, a4, k0, k1c, k1e, k2, k3, k4, k5, k6, I0, I1 and f0 are the model constants, i is the
employed current and vm is the peak velocity of the damper. The sgn2(ẋ) function is a sign function that evaluates
to +1 at 0.

2.4 vm calculation and modification

Under harmonic excitations, the value of vm is given by the expression in eq. (9), as given in Wang et al
(2004) [18].

vm = ω a (9)

Where ω is the excitation frequency and a is the amplitude. Under other excitations, Wang et al (2004) [18]
suggests that the maximum velocity be calculated according to eq. (10), which yields the same result as eq. (9)
under harmonic excitations.

vm =
√
ẋ2 − ẍ x (10)

However, this formulation leads to numerical issues under conditions that aren’t test benches. An example
of such condition is demonstrated in Fig. (3). U1 now determines the values of x, ẋ and ẍ, but the forces exerted
by Wang’s damper modify U1 too. As ẍ grows, so does vm. Because ẍ also increases with evm , this creates an
exponential feedback loop. Numerical issues were experienced when attempting to simulate the system under such
conditions, such as in quarter vehicle simulations, and a new formulation was sought out.

As a substitute term for vm, eq. (11) is proposed.{
vm = max(ẋ, vm) if ẍ ≤ 0

vm = min(ẋ, vm) if ẍ > 0
(11)
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Figure 3. Example of Wang’s damper under a different load condition.

This formulation has the same results as eq. (10) for steady-state under harmonic excitations, but avoids
the issues with exponential feedback growth. It also depends only on past excitation conditions, thus eliminating
responses to non-realized excitations such as the predicted future maximum velocity.

To demonstrate that the original vm term is a source of instability under random loads and that the proposed
formulation is equivalent under sinusoidal excitations, a comparison between simulations of the model in Fig. (3)
with the two different formulations is performed.

2.5 Sigmoid curve modification

The general expression for the Sigmoid curve is also known as Richard’s curve, and was first presented in
Richards [21]. The general expression for the curve is given in eq. (12).

y = kcl +
K − kcl

(γ +Oe−Bt)
1
η

(12)

The Sigmoid portion of eq. (6) is of the form of eq. (13).

y = ft
1− eF1(ẋ)

1 + eF1(ẋ)
= (K − kcl)

(C +O1e
−Bt)

1
η

(C +O2e−Bt)
1
η

(13)

Where C, O2 and η equal 1, O1 equals -1, K equals ft and kcl equals 0. The coefficients set to 1, -1 and 0 could
potentially be used to better the fit of the equations. As such, the modified form in eq. (14) is proposed.

F (ẋ) = ft
(γ −OeF1(ẋ))F4(x)

(γ +OeF1(ẋ))F4(x)
(1− k5)(1 + F2(ẋ)) + kclẋ (14)

F4(x) =

(
1 + sgn2(ẋ)

2
ηp +

1− sgn2(ẋ)

2
ηn

)−1

(15)

These equations give 5 additional degrees of freedom to the curve: O, kcl, γ, ηn and ηp. Because the curve is
asymmetric, the η coefficient was allowed to be asymmetric like the coefficient k1 in the original formulation.
The term kcl was multiplied by ẋ to make it a linear damping term instead. To assert whether this modification
improves the model, a comparison fit was performed.

3 Parameters for vm formulation and genetic algorithm

3.1 Genetic algorithm

The fitting of the function’s coefficients was performed with the standard Matlab genetic algorithm (GA). As
it’s fitness criteria the cost function in eq. (16) was minimized. All simulations were performed using Matlab and
Simulink routines.

C =

tf∑
t=t0

|Fexp(t)− Ffcn(X(t), h)| (16)

Where C is the cost, Fexp(t) is the experimental force measurement at time t, Ffcn(x, t, h) is the expected force
of the evaluated rheological model with coefficients h and excitation X(t) at time t, t0 is the starting time and tf is
the finishing time. This formula is similar to ones used in the literature, such as by Kwok et al [2].

The start and finish times t0 and tf are chosen so as to guarantee that the system is under steady-state. The
start time was 6 s and the finish time 98,6 s. The initial population was generated with a Sobol algorithm. The
crossover rate was 80%, the elitism rate was 5% and the mutation rate was 15%.
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3.2 Parameters of vm formulation evaluation

For the comparison between the proposed vm formulation expressions, the two models are ran under (1) a
pure sinusoidal excitation with idealized terminals and (2) a white-noise added sinusoidal excitation under the
conditions described in Fig. (3), hereby referred to as the under feedback condition. The parameters of the
simulation are displayed in table (1). All simulations were performed using Matlab and Simulink routines.

Table 1. Parameters for the simulations for the vm formulations.

Parameter Sine amplitude White noise power Simulation duration M1 Individual numbers

Value 10−3 1 100 s 1000 1080

Parameter Model coefficients Damper model Initial x, ẋ and ẍ K Generations

Value Table 5 Extended Sigmoid 0 1 300

4 Numerical results

The results for the sine-only excitations and white noise with feedback is in Fig. (4). The results for the
optimization in the time domain and as a function of speed are in Fig. (5). The results for the optimization
coefficients are in Tables (4), (5), (3) and (2). The results of the optimization are in Table (6).

(a) Modified vm, pure sine. (b) Modified vm, feedback with noise.

Figure 4. Modified vm formulation compared to original formulation, pure sine and sine with added white noise
under feedback.

(a) Time domain results (b) Force as a function of speed.

Figure 5. Results for the rheological functions.

Table 2. Results for the fit of the Bingham rheological model.

Constant c fc k f0

Value 1004,74 54,56 24, 5 · 103 -0,91
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Table 3. Results for the fit of the Bouc-wen rheological model.

Constant n α δ γ λ β µ f0 c k

Value 2.5·107 500,00 577,50 14,31 -8,01 21,06 -0.01 -9.04 5052,84 577,50

Table 4. Results for the fit of the original damper model from Wang et al (2001) [13].

Constant Value Constant Value Constant Value Constant Value

a0 (adm) 3,45·104 a4 (m/s)−1 5.39 k0 (adm) 3458.12 k3 (adm) 1351.67

a1 (m/s)−1 22.29 I0 (amp) -7.50 k1c (adm) 67.38 k4 (adm) -0.1378

a2 (amp)−1 0.038 I1 (amp) -1.10 k1e (adm) 37.66 k5 (adm) 0.3221

a3 (amp)−1 -8.05 f0 (N) 21.20 k2 (adm) 1257.43 k6 (adm) 6.93·10−3

Table 5. Results for the fit of the new proposed damper model.

Constant Value Constant Value Constant Value Constant Value

a0 (adm) 3,45·104 a4 (m/s)−1 10.46 k0 (adm) 3356.67 k3 (adm) 1335.20

a1 (m/s)−1 23.94 I0 (amp) -10,96 k1c (adm) 67.41 k4 (adm) -0.1377

a2 (amp)−1 -35.44 I1 (amp) 14,80 k1e (adm) 36.52 k5 (adm) 0.3221

a3 (amp)−1 -4.33 f0 (N) 21.21 k2 (adm) 1257.43 k6 (adm) 5.97·10−3

ηp (adm) and γ (adm) 1 ηn (adm) 1.13 O (adm) 0.9718 kcl(N · s/m) 44,10

Table 6. Equation (16) sum residuals.

Bingham Bouc-wen Wang et al (2004) [18] Modified Exponential

29,8 ·104 N 22,85 ·104 N 7,07 ·104 N 6,46 ·104 N

4.1 Discussion

The results of the vm modification demonstrate the three points proposed: the new formulation is equivalent
to the old one under harmonic excitations at steady-state, the old formulation is unstable and diverges under white
noise excitations with feedback, and the new formulation is stable and returns the expected results of a noisy sine.

For the expanded Sigmoid model, there was an improvement of 8,6% in the fit parameters over the old
formulation. This improvement was seen as a result of the curve being able to better approximate the behavior at
high velocities while maintaining it’s shape at lower velocities. The Bingham and Bouc-wen models performed
worse than both Sigmoid functions. Almost all added parameters were used, with the exception of γ, which was
set to 1. The non-dimensional parameters varied little between the models, but the dimensional parameters were
significantly altered.

5 Conclusions

The parameters for all four rheological models were found. The proposed extended Sigmoid model per-
formed the best among the tested models, showing an improvement of 8, 6% over its literature counterpart. The
optimization rejected the γ parameter. The new proposed formulation for calculating the vm term showed itself to
be stable under pure harmonic excitations as well as white noise added sinusoidal excitations. In contrast, the old
formulation was demonstrated to be unstable and divergent for the latter case. These findings support the use of
the new formulations for parametric identifications that desire greater accuracy, as well as simulations that use the
MR damper under non test-bench conditions, such as vehicular simulations.
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