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Abstract
Vehicle dynamics identification plays a critical role in understanding and modeling the complex behavior of

vehicles during maneuvers and it is fundamental to the design of Electronic Stability Control (ESC) once a mathe-
matical vehicle model needs to be embedded into the brake ECU to calculate the desired yaw rate. This calculated
value is subsequently compared to the measured yaw rate to define ESC actuation during the maneuver. This
paper discusses linear methods for vehicle dynamics system identification, encompassing both model-based and
data-driven approaches. Model-based methods rely on physical principles and mathematical models to describe the
dynamics, while data-driven methods leverage experimental data to identify system parameters and behaviors. The
focus of this study is the identification of a 2-DOF (Degree-of-Freedom) vehicle model based on real data acquired
from a hatchback vehicle. The hatchback vehicle was instrumented and several maneuvers were performed on a
test track to generate data for identification purposes. Furthermore, different speeds of the vehicle were considered
for the identification, followed by a comparison between all the identified models.
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1 Introduction

A considerable portion of vehicle accidents can be attributed to human errors. Factors such as delayed
reactions, limited visibility and driver drowsiness can increase the risk of accidents [1]. To address this issue,
modern cars are equipped with active driver-assist functions that aim to reduce the number of accidents or mitigate
their severity [2].

Electronic Stability Control (ESC) is one of the most significant active vehicle systems and the main goal is
to maintain the lateral control of the vehicle in emergency conditions [3]. The ESC system can reduce crashes and
injuries when compared with non-ESC-equipped vehicles [4]. These are reasons why ESC system has been more
and more used as a standard configuration for automotive manufacturers and has been widely studied by research
institutions.

The ESC plays a crucial role in enhancing vehicle safety and stability during dynamic maneuvers. By uti-
lizing different sensors, the system continuously monitors the vehicle’s actual state, mainly yaw rate and side slip
angle. These measurements are then compared with the desired path planning, which is inferred from the driver’s
actions, such as steering inputs and then the control action is performed in order to keep the stability of the vehicle.
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By dynamically adjusting the brake pressure on individual wheels, the ESC effectively assists the driver in main-
taining control and stability, especially in challenging road conditions or sudden maneuvers. This intervention can
prevent potential skidding, loss of control, and potential accidents, making the Electronic Stability Control system
a valuable safety feature in modern vehicles. [5] [6].

The calculation of the desired yaw rate, which is later compared to the actual vehicle state, is performed by
the brake Electronic Control Unity (ECU) based on the driver’s input over a reference vehicle model[7]. In this
sense, the vehicle model plays an important part in the ESC control strategy once it generates the desired yaw
rate. Furthermore, the reference model is also used for the development of model-based control strategies such
as Model Predictive Control (MPC), Linear Quadratic Regulator (LQR) and Linear parameter-varying control
(LPV). A number of studies have proposed reference vehicle models for control applications. Below, an overview
of various works is provided

In [8], the authors put forward a comprehensive and insightful proposal of a 2-DOF bicycle model, which
serves as a reference vehicle model for the design of an Electronic Stability Control (ESC) system. The choice of
this particular model stems from its ability to effectively capture the essential dynamics of a typical vehicle’s mo-
tion. In [9], a 3-DOF yaw plane model is developed for ESC control, while a 2-DOF bicycle model incorporating
tires is adopted for controlling the Active Front Steer (AFS). Regarding the usage of robust controllers, a 2-DOF
vehicle model is designed in order to provide the yaw reference for the Model Predictive Controller (MPC) [10].
Despite the widespread use of the 2-DOF as a reference vehicle in numerous studies, this model cannot describe
the car’s dynamics in every situation, as it has some limitations, particularly under extreme conditions [10].

Another approach for modeling vehicle dynamics is through system identification. This method involves
utilizing vehicle data as input/output to develop a model that accurately represents the behavior of the system
under examination. System identification is a powerful technique that enables engineers and researchers to analyze
complex systems, such as vehicles, without the need for explicit knowledge of their underlying physical principles.
Several works implement system identification for modeling vehicle dynamics behavior.

In [11] the identification of a 6x6 military vehicle model is performed using the CONTSID (CONTinuous-
time System IDentification) toolbox[12]. A double lane change maneuver is executed to gather data directly from
the vehicle. The identification resulted in a specific transfer function for each vehicle’s speed. A non-linear model-
based observer is implemented in [13]. The paper presents the usage of an augmented Extended Kalman filter for
the online identification of tire cornering stiffness using onboard sensors. The identified model is used to improve
the performance of the active control system.

In this current study, a continuous-time model identification of a hatchback vehicle is performed. The vehicle
was instrumented with sensors and a series of maneuvers were executed on the test track. Subsequently, the
acquired data is used for model identification purposes. The analysis of the transfer function between yaw rate
and wheel steering angle, examining how varying speeds impact the identification process. Furthermore, a linear
identification approach is employed and their outcomes are discussed. Consequently, the main contribution of this
paper resides in the application of linear identification technique to a hatchback vehicle, along with an investigation
into the influence of speed on these models.

This paper is organized in the following order. The details of the vehicle model are in Section II. In Section
III, a linear identification technique is designed. The methodology for the identification procedure is described in
IV. The results are given in Section V and the paper is concluded in the discussion in Section VI.

2 Vehicle Dynamics Modeling

A mathematical model is one of the main approaches to representing a complex dynamic system. The vehicle
mathematical model can be described with different DOF based on the number of dynamics considered. A simple
way of representing a vehicle’s motion is the bicycle model, in this model the steering system, suspension system,
aerodynamic, pitch, and roll movement are neglected and the vehicle moves on a rigid surface. The model has
2-DOF, translational in the lateral direction and rotational motion of yaw such as shown in Figure 1.

In this model, R is the radius of the turn, L = a + b is the wheelbase, β = arctan(v/u) ≈ v/u (for small
angles) is the side-slip angle at CG, u the longitudinal speed, αf and αr are the wheel sleep angle of the front
and rear wheels respectively, v the lateral speed and the yaw rate r = ψ̇. Considering the geometrical relationship
between the terms in Figure 1, we obtain:

αf = δf − v + ar

u
(1)

αr = −v − br

u
(2)
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Figure 1. Schematic of bicycle model [3]

Considering that the instantaneous speed tangent to the path at the CG is u = rR, one can obtain

αf − αr = δf − L

R
(3)

δf =
L

R
+ αf − αr (4)

These equations can be subdivided into two parts: the static part (L/R) and the dynamic part which represents
the difference between the front and rear tire-slip angles. In the case where the front tire slip angle is larger than
the rear tire slip angle, this situation is referred to as understeer. On the other hand, if the rear tire slip angle is
larger than the front tire slip angle, it means an oversteer situation. When both slip angles are equal, this represents
a neutral condition. Applying the second Newton’s Law for the direction y of the movement, one obtains:

Fyf + Fyr = may (5)

Taking into account the centripetal acceleration component, the lateral acceleration transforms into ay =
v̇ + ur. Thus,

Fyf + Fyr = may = m(v̇ + ur) (6)

where equation 6 is the first equation of state for the force representing the first degree of freedom and the
second equation for the moment is 8. By introducing an external stabilizing torque Mesc computed by the ESC
algorithm, the following arrangement is achieved:

Fyf + Fyr = muψ̇ +mv̇ (7)

Mesc + aFyf − bFyr = Izψ̈ (8)

Equations 7 and 8 can be written in a nonlinear state-space format:

ẋ = −E−1Fx+ E−1Gu+ E−1Hw (9)

where x(t) = [v, ψ̇]T is the state vector, u = Mesc is the controlled input signal and w = [Fyf , Fyr]
T an

external input signal acting on the system. The matrices E, F , G and H are:

E =

m 0

0 Iz

 F =

0 mu

0 0

 G =

0
1

 H =

1 1

a −b

 (10)
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3 Continuous-time Model Identification Problem

The continuous-time (CT) system identification problem consists of obtaining a continuous model from sam-
pled data. Garnier et al. [14] describes two methods in time domain for accomplishing this task. The indirect
approach uses experimental data to obtain a discrete model and then performs a continuous approximation, for
example using ZOH (Zero-Order Hold). The second method called direct, does not need to obtain an intermediate
discrete model to approximate a continuous model. Given that the experimental data of a model has an inherently
discrete nature, it is possible to initially conclude that a discrete-time (DT) identification is the most recommended
technique. But, one of the main advantages of CT identification is that they are more intuitive because the model
can be interpreted in physically meaningful terms [15], and these models are not restricted to the same sample
time used to obtain the experimental data [14]. The general problem of continuous-time system identification can
be expressed initially through the representation in differential equations of a Linear Time-Invariant (LTI) system
[14]:

y(n)(t) + a1y
(n−1)(t) + · · ·+ an−1ẏ(t) + any(t)

= b0u
(m)(t) + b1u

(m−1)(t) + · · ·+ bm−1u̇(t) + bmu(t) + v(t)
(11)

where y(n)(t) is the n-th time derivative of the input signal and u(m)(t) the m-th time derivative of the model
output signal and v(t) represents measurement error. Writing equation 11 in the time-domain differential operator
form:

y =
B(p)

A(p)
u(t) + ξ(t) (12)

ξ(t) =
1

A(p)
v(t) (13)

A(p) = pn + a1p
n−1 + · · ·+ an−1p+ an (14)

B(p) = b0p
m + b1p

m−1 + · · ·+ bm−1p+ bm (15)

where pn is the n-th order time differential operator dn/dtn. At any time instant t = tk equation 12 can be
written in linear regression form:

y(n)(tk) = ϕT (tk)θ + v(tk) (16)
ϕT (tk) = [−y(n−1)(tk) · · · − y(tk)u

(m)(tk) . . . u(tk)] (17)
θT = [a1 . . . an b0 . . . bm] (18)

To obtain the optimized vector of unknowns θ, it is necessary to solve the following optimization problem:

θ̂ = argmin
θ

1

N

N∑
k=1

l(ϵf (tk, θ)) (19)

ϵf (tk, θ) = F (•)(y(tk)− ŷ(tk, θ)), k ∈ 1, . . . , N (20)
ŷ(tk, θ) = g(θ, Zk−1) (21)

where ŷ(tk, θ) is the system predictor, dependent on a unknown parameter vector θ and past data Zk−1. The
function F (•) is the differential operator when CT case is assumed and l(ϵf (tk, θ)) a scalar-valued positive func-
tion. The dependence of the regression vector ϕT (tk) on the time derivatives of y(i), u(j), where i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m} poses a problem because these derivatives normally are not measured. The use of methods like
RIVC (Refined Instrumental Variable) for CT systems [16] can be used to overcome this limitation. This method is
well implemented in CONTSID, a MATLAB toolbox specifically designed for CT system identification, through
the function tfrivc.

4 Experimental Data

The experimental data of steering wheel angle δf and yaw rate ψ̇ were obtained from the hatchback vehicle
by performing the Moose Test, a maneuver without braking to evade a suddenly appearing obstacle [17]. Figure 2
shows a set of data obtained experimentally from the vehicle under study.
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Rafael Rodrigues, Reurison Silva, André Murilo, Helon Vicente, Evandro Leonardo

Time (s)

Input - Steering angle

Time (s)

Output - Yaw rate

Figure 2. Input/Output experimental data obtained from Moose test.

The red line graph represents the vehicle input signal, i.e., steering angle δf and the blue line graph represents
the yaw rate output data ψ̇, measured on a fixed coordinate axis on the vehicle body. The data were obtained at a
sampling rate of 500 Hz. From the experimental data presented, it is possible to relate δf and ψ̇ into a continuous
transfer function in the complex variable s as:

ψ̇(s)

δf (s)
=
N(s)

D(s)
= K

∏nz

i=1(s+ zi)∏np

i=1(s+ pi)
(22)

We define deg(N(s)) and deg(D(s)) as the degree of the transfer function numerator and denominator,
respectively. It is important to mention that in the experiments the following restriction is imposed deg(N(s)) <
deg(D(s)), in order to allow only the identification of strictly proper transfer functions. This is consistent with the
characteristic that real physical systems do have finite bandwidth. The values nz and np are the number of zeros
and poles of the transfer function, respectively. These are the free-parameters that can be chosen in the CT system
identification.

5 Results

Different models were identified for the following longitudinal velocities: 55, 59, 58, 60, 62 and 64 km/h.
Once the models were identified, validation was performed using a different set of maneuvers. In this case, a Sine
With Dwell (SWD) with a longitudinal constant velocity of 80 km/h, turning initially to the right. This contrasts
with the original Moose test which is performed by turning the steering wheel initially to the left, as can be seen
in Figure 2. The SWD maneuver consists of a constant steering wheel sine wave with a specific dwell time at its
second peak. It has been shown in [18] that SWD is often used to certify stability control systems on light vehicles.

Regarding the nonlinear state-space equation (9), is made the assumption that the order of the system is 2.
Thus to accommodate this information into the identified linear transfer function (22), and also considering only
strictly proper functions, it is chosen : nz = 1 and np = 2. Results obtained in the validation step are shown in
Figure 3.

These results can be summarized in the Table 1 in terms of poles and zero locations, FIT to the original data
and the multiple correlation coefficient R2, both define as:

FIT = 100×
(
1− ||y(t)− ŷ(t)||2

||y(t)− ȳ(t))||2

)
(23) R2 = 1−

∑N
t=1[ξ(t)]

2∑N
t=1[y(t)− ȳ(t)]

(24)

where ξ(t) = y(t) − ŷ(t) is the residual, or the difference between the real output from the model y(t) and
ŷ(t) the predictions obtained with the identified model. The value ȳ(t) is the average value of the sequence y(t).
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Figure 3. Results from model validation of identified CT systems for different longitudinal velocities.

Longitudinal Velocity (km/h) Poles Zero K FIT (%) R2

55 -6.1850 ± 5.2015i -8.756 1.7052 94.80 0.9668

58 -4.4365 ± 5.0860i -7.761 1.3223 80.93 0.9566

59 -4.6725 ± 6.2055i -10.67 1.2937 91.19 0.9708

60 -4.9400 ± 4.5537i -6.437 1.597 90.47 0.9626

62 -13.7700 ± 16.6999i +23.7 4.8896 90.03 0.9550

64 -5.1450 ± 6.5161i -12.48 1.3037 89.91 0.9682

Table 1. Poles and Zero locations from of identified CT systems for different forward velocities.

From Table 1 it is possible to see that all the identified models are stable, i.e, ℜ(pi) < 0. It is worth
mentioning that the identified dynamic for 62km/h is a non-minimum phase system, presenting a zero in the
right half complex plane. Although this not compromises the stability, it could impose an upper limit in terms
of bandwidth achieved by a possible controller. For the sake of comparison, when CT identification is performed
with np = 3, nz = 1, and focusing only in FIT and R2 results are summarized in Table 2. Results from the tables
1 and 2, shows that the assumption of lateral dynamics as a 2nd order transfer function is a good approximation
for the nonlinear original model 9. It is possible to do a more exhaustive search for other combinations of np and
nz which could increase the FIT and R2, but to obtain a model of greater order signifies obtain a more complicate
model when considering the design of controllers or state estimators.

55 58 59 60 62 64

FIT (%) 94.74 77.39 91.10 88.19 48.96 82.15

R2 0.96 0.94 0.97 0.94 0.68 0.94

Table 2. CT identification, when np = 3 and nz = 1.
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6 Conclusions and Future Work

A continuous-time (CT) system identification for the lateral dynamics of a hatchback vehicle has been per-
formed. The vehicle was instrumented and a set of maneuvers were executed on a test track. The resulting data is
then employed to execute the identification methods. Results showed that identified transfer functions of 2nd order
offered a good approximation for the experimental data. Once these identified models are linear then it is possible
to treat them with the usual linear framework tools for controller synthesis. The multiple correlation coefficient
showed a good level of correlation for the different speeds. Thus, the obtained transfer function can serve as a
suitable representation of the reference vehicle model for calculating the ideal yaw rate within the brake system
ECU, as well as a model for designing a model-based controller. Suggestions for future works include: performing
a LPV system identification, using the longitudinal velocity as a variable parameter. The use of a more diverse
set of maneuvers to improve the validation of the identified system, and finally, in the base of the actual models,
design and implementation of a controller directly in the ECU.
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