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Abstract. Dynamic structural analysis in civil engineering is the method, in which, the vibrations response, modes, 
frequencies, displacements, velocities and accelerations, of a real-world structure caused by arbitrary external 
excitements is predicted, before its design and construction. But even for simple structures, to conceive the analysis 
by hand, without relying on simplifications, for which, by themselves, sacrifices precision of the analytical 
solutions, is hard. Therefore, a computational method to solve these structures is needed. But these softwares come 
at a high monetary cost, causing an inaccessibility for students to have access to, even for confirming and/or 
learning purposes. For such, a computational tool development, capable of linear structural analysis, both in 2D 
and 3D, in dynamic regime, open-source for all, were proposed. To make it possible, the Finite Element Method 
(FEM), for structural discretization, the Rayleigh damping model, for viscous approximation, the Newmark's 
numerical method, for vibration analysis, and the Eigen-vectors and values, for modal analysis, and Python, for 
the programming language, were used. And to a reticular structures, they were applied. Then, with examples found 
in the available literature in the subject of dynamic structural analysis, were tested and compared. The results from 
examples tested, errors ranging from 10-5 to 10-2 were shown by the tool, in the same unit as the mesh and properties 
and time discretization, inputted in the program, compared to examples available in the literature. 
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1  Introduction 

As Steven Strogatz said “since Newton, mankind has come to realize that the laws of physics are always 
expressed in the language of differential equations”. And in engineering is not different, since the field applies the 
understanding of such laws into real-world structures. But, in some structures, the complexity of these real-world 
structures are so great, that it falls off where the knowledge hits its edge. For such structures, a CAE is needed to 
attain an approximate solution to such. 

CAE, Computer Aided Engineering, is the appliance of the computer processing power, greatly increasing 
engineers capability to predict its behavior. But to harness such power, in such complex problems, an advanced 
numerical method is imperative, for a computer does not work at a continuum, but at the discrete. Advanced 
numerical methods, for which finite element methods are the most efficient and most frequently used, are 
extremely important for complicated engineering structures such as spacecraft, buildings, bridges, dams, etc. By 
means of dynamic analyses and simulations one can determine whether a structure under considerations will fulfill 
its function, and the results of the dynamic loadings acting on this structure can be predicted, Mackerle [1]. 

The Finite Element Method, FEM for short, is a method in which the structure is discretized into elements 
with finite size, connected through nodes, Zienkiewicz and Taylor [2] and Oden and Reddy [4], in the 
bidimentional case with 6 degrees of freedom (d.o.f.), being 3 for each node, and in the tridimensional case 12 
d.o.f., 6 for each. In which, through matrices, element-type (reticle in this paper), is approximated (through 
polynomials in this paper, with Euler-Bernoulli assumptions), inputting values relevant to the specific properties, 
that is allocated into a global matrix, that then describes the structure as a whole. These element-wise matrices, 
were derived through energy method, applying the stationary-action principle. The kinetic energy equations were 
used to derive the mass matrix, while the potential elastic energy equation were used in the stiffness matrix. The 
degree of the polynomials coincides with the d.o.f. involvements with each other, degree 4 for shear and 
momentum (2 d.o.f per node), degree 2 for axial (1 d.o.f. per node) as well for torsion, Weaver and Gere [5] and, 
Weaver and Johnston [6]. 



Python Program for 3D Linear Dynamic Reticular Structural Analysis Based on Finite Element Method   

CILAMCE-2023 
Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  
Porto – Portugal, 13-16 November, 2023 

Finally, there are many computational tools for structural analysis, usually available in commercial version. 
Therefore, the purpose of this paper is to develop a free and open-source computational tool for structural analysis. 
For such, it was written with Python as language, known for its accessibility. 

2  Finite Element Formulation for 3D Reticular Linear Dynamic Analysis 

So, let a frame finite element of length (L), area (A), density (ρ), Young modulus (E), shear modulus (G) 
and inertial moments (IX, IY and IZ) be subjected to a linearly distributed load q(x). Since, by hypothesis, the frame 
is subjected to axial forces, bending forces and torsion, the nodal parameters associated with nodes i and j of this 
finite element are rotations and translations as shown in Fig. 1. 
 

 
 

Figure 1. Finite element nodal degrees of freedom. 
 

For such element type, with linear assumptions, to treat the d.o.f. as separate groups, since the superposition 
principle applies, is possible into two groups: pair and sole. There are two pairs, where the relationship between 
shear force and its momentum are related (2 and 6 in i with 8 and 12 in j, for example). And there are two sole, 
like torsion (4 in i and 10 in j) and axial force (1 in i and 7 in j), where only one d.o.f. from each side is involved. 
The polynomials degrees coincide with the d.o.f.s involved, and then the polynomials with its coefficients attained 
from boundary conditions, allocated into a single matrix, super positioned. That’s how the reticular element-type 
is described. And then each element, will have its particular properties described by its length, density, area, etc. 

3  Dynamic Analysis 

According to Rao [7], the dynamic equilibrium is given by Eq. (1). 
 

 ( ) ( ) ( ) ( )M C KX t X t X t F t  
      (1) 

 

where, M is the mass matrix, C is the damping matrix, K is the stiffness matrix, ( )X t

 is the accelerations vector, 

( )X t

  is the velocities vector, ( )X t


is the displacements vector and F(t) is the forces vector. 

In the dynamic case, the element is represented by both, the mass and the stiffness matrices as shown in Eq. 
(3) and (4), respectively. For the damping matrix, the Rayleigh method was used, Paz and Leigh [8]. The Rayleigh 
method is an approximation by a linear junction of both matrices (mass and stiffness), each with weight 
coefficients. And its models the loss of energy from the system through time. 

3.1 Tridimensional Stiffness Matrix and Consistent Mass Matrix 

With twelve d.o.f., as show in Fig. 1, each consistent matrix will be a 12x12, in the local coordinate system. 
Since the derivation from the energy equations to the matrix are non-trivial, the consistent mass and stiffness 
matrices are only shown, as we can see in Eq. (2)-(3), respectively. 
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According to Cook et al [9], the use of a consistent mass matrix results in greater accuracy despite lower 

computational savings compared to the discrete mass matrix. The use of this consistent mass matrix is important 
when implicit temporal integration algorithms are employed. 

3.2 Newmark  

As for the time discretization, the Newmark’s method were used, Petyt [10]. It’s given by a Taylor expansion 
from the displacements given a time t into a time t+1, as shown in Eq. (4). Which is then considered that the 
acceleration between these two points of time, is the average between the two, which gives  = 0.25 and  = 0.5. 

  2
1 1 1 1

1
(1 )

2
        t t t t t t t t tu u tu t u u and u u t u u      

                 
        (4) 

Then, the R and Q parameters are derived from it, as shown in Eq. (5), respectively: 

2

1
(1 )

2
        t t

t t t

u u
R u t u and Q u

tt
 


           

                                      (5) 
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Finally, those parameters were applied into the Eq. (1). Turning a continuum equation that depends on 
displacement, velocity and acceleration, into one that only depends into past information, through R and Q, and 
the displacements the only unknown, as shown in Eq. (6). 

12

M C
K M C Ct t t tu F Q R Q t

tt

 
 

 
        

                                       (6) 

4  Numerical Results and Validation 

Analytical and numerical examples available in the literature were tested and the obtained results showed the 
good performance of the implemented tool for the tested examples. In this section, three examples are presented. 

4.1 Cantilever beam under harmonic force presented by Torii [11] 

The problem consists of a classical cantilever beam in bidimensional space, with length of L = 1 m as shown 
in Fig. 2. The geometric and material properties are unitary, and the time span of the analysis is T = 10 s, with a 
time-step of T = 0.00125 s. A unitary senoidal force in the X direction, with angular frequency of  = 20 rad/s, 
with no phase shift, is applied. Figs. 3-6 compares the analytical solution given in Torii [11] with the present 
numerical solution for different discretizations. Black-line is the analytical solution and blue-line is the present 
numerical solution. As it is possible to observe the numerical solution converges to the analytical solution as the 
number of finite elements of the discretization increases. 

 

 
Figure 2. Cantilever beam under harmonic force, 

Torii [11]. 
 

Figure 3. Numerical solution with 20 elements. 
 

  
Figure 4. Numerical solution with 50 elements. Figure 5. Numerical solution with 100 elements. 

4.2 3D Frame under variable force presented by Barros [12]. 

The next two examples comes from Barros [12]. Both have an pulse as dynamical forces (Fig. 7), although 
the P value vary, the pulse time span in constant with duration of T = 0.04 s and its peak value at t1 = 0.02 s, 
starting at t = 0, as well as its direction through positive X. 

The first 3D example, is a frame with 5 nodes, labeled from 1 to 5 as shown in Fig. 6. The nodes 2 to 5 are 
constrained in all d.o.f.. The element properties are as follows in Table 1. All bars have been refined, so that each 
bar has 2 elements. And the time step of t = 10-3 s was used. The results are as follows in Fig. 8 in a qualitative 
comparison with the reference solution shown in Fig. 9. It was not possible to find the value of P applied. 
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Figure 7 – Impulsive excitation, Barros [12]. 

 
 
 

Table 1 – Material and geometrical properties. 
 

Properties Bars 1 and 3 Bars 2 and 4 

E (N/m) 207x109 207x109 

G (N/m) 80x109 80x109 

ρ (kg/m3) 43530.56 38840.53 

A (m2) 3.23x10-2 1.81x10-2 

J (m4) 1.66x10-5 5.33x10-6 

Ix (m4) 8.32x10-5 2.66x10-5 

Iz (m4) 8.32x10-5 2.66x10-5 
 

 
Figure 6 - 3D Frame under horizontal pulse load, 
Barros [12]. 

  
Figure 8 – Present solution for P = 50 N. Figure 9 – Reference solution, Barros [12]. 

4.3 Two floors 3D Frame under variable force presented by Barros [12] 

The second 3D example is a two floors high frame structure, without slabs (Fig. 10), with 2 types of cross 
sections. The pillars, or bars in the Z direction, have section AA, while the beams have section BB (Table 2). They 
both have E = 219,9 x 109 N/m, G = 87,96 x 109 N/m and ρ = 7850 kg/m3. All bars have been refined, so that each 
bar has 2 elements. And the time step of t = 10-5s was used. The results are as follows in Fig. 11 in a qualitative 
comparison with reference solution shown in Fig. 12. Again, it was not possible to find the value of P applied. 
 

 

Table 2 – Material and geometrical properties. 
 

Properties Section AA Section BB 

A (m2) 2.5x10-3 7.5x10-3 

J (m4) 1.04x10-6 1.67x10-5 

Iy (m4) 5.21x10-7 1.41x10-5 

Iz (m4) 5.21x10-7 1.56x10-6 
 

Figure 10 – Geometry of the framework, Petyt [10]. 
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Figure 11 – Present solution for P = 75000 N. Figure 12 – Reference solution, Barros [12]. 

5  Conclusions 

A 3D finite element formulation in dynamic regime, in Python language, for the reticular structural linear 
analysis, was successfully implemented as it is possible to conclude from the obtained results. It is important to 
mention that in this first moment the focus was on the development of the first functions of the program, that is, 
the development of a tool for the analysis of reticular structures in a linear elastic regime. Future works will aim 
to develop a graphical interface that will enable a more user-friendly environment for input data, currently done 
through a text file or directly in the programming environment. It concludes, with a free and open-source Python 
computation code, open for all to use, and such, the foundations for future engineers to further expand its 
functionalities is available. The source code is available in the GitHub repository under GNU v3 license. The 
GitHub link being: https://github.com/gCarvalhoFerreira/FEM-Python. 
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