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Abstract. Bridge infrastructure plays a vital role in facilitating transportation networks and is subject to various
types of damage that can compromise its structural integrity. Early detection of bridge damage is crucial for en-
suring public safety and minimizing maintenance costs. The present work proposes a spatial transformer-based
machine learning architecture for the detection of bridge damage through computational simulation of vibration
data. Traditional methods for bridge damage detection predominantly rely on visual inspections or expensive
sensor networks deployed on bridges. These methods are time-consuming, expensive, and often suffer from lim-
itations such as human subjectivity and limited coverage. To overcome these challenges, the proposed solution
leverages the advancements in machine learning that allow the detection of damages that can be easily overlooked
during the inspection process. Spatial Transformers are a type of neural network module that can learn to perform
spatial transformations on the input data. These transformations help the network align and focus on relevant re-
gions of the input data, which can be particularly useful in tasks that involve object recognition, image alignment,
and other spatially related problems. The advantages of the proposed system include its non-intrusive nature,
cost-effectiveness, and scalability.
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1 Introduction

Prompt detection of bridge damage is of utmost importance to ensure public safety, prevent catastrophic
failures, and minimize maintenance costs. Traditional approaches for bridge damage detection have primarily re-
lied on visual inspections conducted by experts or the deployment of expensive sensor networks on the bridges.
While these methods have been valuable, they often suffer from limitations such as time-consuming processes,
subjectivity in inspection, and limited coverage of all bridge areas. To ensure the operational efficiency of the
railway system, various mathematical approaches and techniques are investigated for making decisions regarding
the structural safety conditions of bridges that go beyond visual inspections. For instance, sensors and monitoring
technologies are utilized to gather highly accurate and efficient structural response data. Structural Health Moni-
toring (SHM) encompasses the integration of sensors, data transmission, and computational resilience to assess a
structure’s physical condition, with the goal of gaining insights into its structural integrity, as defined by Balageas
et al. [1] and Yuequan et al. [2].

Unlike the direct monitoring of railway bridges, an alternative approach involves situating sensors on trains
rather than on the bridges themselves. These sensors capture operational and environmental responses of the train-
bridge interaction as the train traverses the bridge. Previous investigations demonstrated that the success of machine
learning based structural damage detection techniques predominantly depends on the choice of the extracted fea-
tures as well as the classifier [3]. This investigation aims to establish a methodology utilizing a spatial transformer
neural network to identify scour damage in railway bridges through this indirect monitoring approach. The model
combines sensor data, computational processing, and neural network architecture to accurately identify structural
abnormalities. The spatial transformer module allows the spatial manipulation of the data [4], enabling input data
to align with relevant structural features. Transformed representations are then encoded through subsequent neural
network layers, capturing intricate patterns and variations that indicate damage.
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2 Damaged and baseline data acquisition

Simulation of dynamic effects caused by trains on railway structures relies on numerical models. Advance-
ments in mathematical approaches and equipment calibration using real experimental data have led to more so-
phisticated and accurate simulations that closely mimic real train conditions. The Vehicle-Track-Bridge model
developed by Cantero [5] was employed in order to generate the simulated vibration data for four classes of dam-
age. Baseline data were also generated, simulating a healthy behavior of a railroad bridge. This study focuses
on analyzing a specific form of structural damage known as scour. Scour is a phenomenon characterized by the
erosion and removal of soil or sediment from around bridge foundations, leading to potential structural instabil-
ity. The scour-induced damage is particularly crucial for bridge infrastructure integrity, as it can compromise the
stability of key elements, as depicted in figure 1. Scour damage is modeled here as the stiffness reduction of the
spring of the central support.

Figure 1. Model of the train-track-bridge interaction, adapted from Fernandes [6]

3 Model proposition and architecture

A spatial transformer neural network was designed for the present investigation, aiming to classify bridge
signals based on their healthiness levels. The data set, comprising 5830 acceleration measures categorized into
five distinct healthiness classes, underwent stratified random sampling to create separate training, validation, and
testing subsets. The model’s architecture (see fig. 2) includes a Localization Network that predicts transformation
parameters (theta). Reshaped theta tensor undergoes a transformation process involving matrix multiplication,
dimensional expansion, and squeezing. Once the input is transformed, data progresses through fully connected
layers (fc1 and fc2) dedicated to feature extraction. The process concludes with an output layer utilizing softmax
activation for class probability computation, thus enabling efficient classification.

Training occurred over 100 epochs with a batch size of 32. Dynamic learning rate scheduling was employed
through an exponential decay strategy tailored to data set traits. The selection of the Adam optimizer was informed
by its effective optimization capabilities. The architecture underwent iterative refinement to strike a balance be-
tween representation capacity and training speed, achieved by varying dense layer units. Implementation of early
stopping helped counter over fitting while expediting convergence.

4 Results and discussion

Machine learning builds mathematical models from data containing multiple attributes [7] and in order to
evaluate the trained model’s performance, the confusion matrix was analysed for classification accuracy and plotted
ROC curves to assess discrimination between healthiness levels. In the evaluated results, the spatial transformer
neural network demonstrated promising performance in classifying bridge signals based on their healthiness levels.
The model achieved an overall accuracy of approximately 97.2% on the test set, showcasing its ability to accurately
categorize signals into the respective healthiness classes.
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Figure 2. Spatial transformer neural network architecture scheme

4.1 Confusion matrix

A confusion matrix provides a clear visualization of the classification performance by tabulating predicted
and actual classes. In this scenario, each row represents the actual damage levels, while each column corresponds
to the predicted levels. The confusion matrix (fig. 3) allows the quantification of true positives, true negatives,
false positives, and false negatives, enabling a comprehensive assessment of the classification model’s accuracy
and effectiveness in differentiating between damage states.

Figure 3. Spatial transformer neural network confusion matrix in test set
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4.2 ROC curves

On the other hand, the Receiver Operating Characteristic (ROC) curve (fig. 4) is a graphical representation of
the true positive rate against the false positive rate at different classification thresholds. In the bridge monitoring
context, the ROC curve showcases the trade-off between correctly identifying damaged signals (sensitivity) and
misclassifying undamaged signals as damaged (specificity). The area under the ROC curve (AUC) quantifies the
overall performance of the classification model, with a higher AUC indicating a more accurate and robust classifier.

Figure 4. ROC curves comparing learning rate for baseline and five percent damage (left) and baseline and ten
percent damage (right)

4.3 Model predictions for different damage scenarios

For five distinct data sets, each containing data associated exclusively with a specific class or level of damage,
the model predicts the corresponding class or damage level.

Figure 5. Model predictions for each data set containing data from one class of structural damage

Fig. 5 illustrates the fluctuations in the model’s predictions across varying degrees of damage scenarios,
showcasing its proficiency in accurately identifying each level of damage severity.
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4.4 Discussion

As proposed by James et al. [8], confusion matrices are often a convenient way to display the information
about which types of errors are being made. Combining confusion matrices and ROC curves offers a comprehen-
sive framework to evaluate the effectiveness of the signal classification model across multiple damage levels. By
analyzing these metrics, one can make informed decisions about the model’s ability to accurately classify signals
from various damage states, thereby enhancing the understanding of the bridge’s structural health and aiding in ef-
fective decision-making for maintenance and repairs. Spatial transformer’s ability to learn spatial transformations
without making any changes to the loss function, as proposed by Jaderberg et al. [4] and related work by Lee et al.
[9] enables accurate results, which encourage further exploration and integration of spatial transformer networks
into structural health monitoring systems.

5 Conclusion

A spatial transformer neural network has been devised to precisely classify bridge signals according to their
healthiness levels, achieving 97.2% accuracy on the test set. Its real-world applicability in structural health mon-
itoring systems holds promise for ensuring public safety and maintaining structural integrity. Exploring the in-
tegration of spatial transformation mechanisms with neural networks for structural health monitoring and bridge
health assessment was the main goal of this study, through this approach, significant advancements are anticipated
in the model’s capabilities, making it more relevant and effective in real-world scenarios. The potential impact of
spatial transformer model holds promise for ensuring the safety and longevity of critical infrastructure like bridges,
ultimately benefiting society as a whole. Continued research and refinements to the model may further enhance its
robustness and generalization to various bridge conditions and environments.
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