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Abstract. This paper focuses on the algorithmic and computational aspects of implementing the clay and sand
model (CASM) using a fully implicit numerical scheme. CASM is a unified critical state model that relies on
the state parameter concept and incorporates a non-associated flow rule. Within this framework, the subloading
enhancement is introduced, which enables a smooth elastic-plastic transition through an isotropic modification.
The addition of just one extra parameter significantly enhances the calibration process. Subsequently, the modified
version of CASM is implemented into a finite element procedure. The demonstrate the efficiency and good perfor-
mance of the proposed algorithm, including the subloading modification, simulations of triaxial compression tests
under undrained conditions are conducted.
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1 Introduction

Classical elasto-plastic constitutive models can capture the constitutive response of soils. However, several
limitations have been frequently reported: the yield surface is too large, they predict a drastic shift between elastic
and elasto-plastic regimes, and they fail to predict the accumulation of strains during long amplitude cyclic loading
(Wichtmann et al. [1]). An existing constitutive model might be extended to introduce these realistic soil behaviour
features by reformulating it in the framework of subloading surface plasticity (Hashiguchi [2, 3]; Hashiguchi et al.
[4]; Hashiguchi [5]) or bounding surface plasticity (Rouainia and Muir-Wood [6]).

Robust and efficient stress integration techniques are thus required to use these constitutive models for numer-
ical simulations of boundary value problems. There are several procedures to compute the stress increment given
a strain increment, such as explicit integration (Sloan et al. [7]) or implicit methods, in which the return algorithms
are probably the most well-known method (Simo and Hughes [8]). Explicit stress integration schemes have been
employed to extend existing elastoplastic constitutive models to the subloading surface approach, for instance, the
modified Cam-Clay model (Pedroso [9]) and CASM (Pinedo et al. [10]). However, the main advantage of the
implicit integration algorithm is that unconditionally stable, and therefore results in a quite robust scheme from the
computational numerical point of view (Hashash and Whittle [11]).

Clay And Sand Model (CASM) (Yu [12]; Mánica et al. [13]; Arroyo and Gens [14]) is a model based on
the classical elasto-plasticity framework. In this work, an implicit integration scheme is employed to discretize
the constitutive equations of CASM extended using a subloading surface plasticity approach. Moreover, this new
constitutive model is programmed in FORTRAN as a user-defined soil model (UDSM) in PLAXIS computer
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application (PLAXIS [15]).

The paper is organized as follows: a summary of the CASM and its extension in the subloading surface
approach, then a detailed explanation of the implicit numerical integration and, finally, the achievement of this
method is evaluated in simulations of the Boston Blue Clay laboratory tests (BBC) (Braathen [16]; Pestana et al.
[17]).

2 Subloading surface approach

Subloading surface plasticity, as proposed by Hashiguchi [2, 3] and Hashiguchi et al. [4], presents an uncon-
ventional plasticity framework characterized by its ability to represent the smooth transition from an elastic to a
plastic regime. This approach employs two distinct yield surfaces: the subloading surface and the normal yield
surface. The current stress is always situated within the subloading surface. Although both yield surfaces share the
same shape, they are different in size (Hashiguchi et al. [4]). In addition, this approach induces plastic strain within
the normal yield surface, allowing for the representation of hysteretic behaviour during cyclic loading. Moreover,
this is accomplished by introducing an additional hardening law, consisting of one hardening variable and an ex-
tra constitutive parameter. The following section provides a summary of the extension of the CASM model to
incorporate subloading surface plasticity.

Classical elasto-plasticity for small strains assumes that the strain tensor, ϵ, can be additively decomposed
into its elastic and plastic parts, denoted by ϵe and ϵp, respectively (Simo [18]). Subloading plasticity similarly
preserves this strain decomposition. The elastic law is expressed in terms of both the volumetric and deviatoric
components:

σ = s+ p′1 ṗ′ = Kϵ̇ev = K(ϵ̇v − ϵ̇pv) ṡ = 2Gϵ̇ed = 2G(ϵ̇d − ϵ̇pd) (1)

where σ is the Cauchy stress tensor, s stands for the deviatoric stress tensor, p′ = 1/3trσ is the mean effective
stress, 1 is the second order identity tensor, K is the bulk modulus, ϵev is the volumetric elastic strain, ϵv is the
volumetric strain, ϵpv is the volumetric plastic strain, G is the shear modulus, ϵed is the deviatoric elastic strain,
ϵd represents the deviatoric strain and, ϵpd is the deviatoric plastic strain. The value of the bulk and shear moduli
depend on the mean effective stress:

K =
p′

κ∗ G =
3(1− 2µ)

2(1 + µ)
K (2)

where κ∗ = κ/(1 + eo) represents the slope of the swelling line in a volumetric strain-logarithmic mean stress
compression plane, where eo is the initial void ratio and, µ is the Poisson’s coefficient.

The extension of the CASM to the subloading surface framework requires the definition of two yield surfaces:
the normal yield surface, F , and the subloading surface, f . Both of these yield surfaces, are expressed by eq. (3)a
and eq. (3)b, respectively. The equation defining the normal yield surface coincides with the yield surface of
CASM based on classical elastoplasticity.

F =


√

3
2s : s

p′Mθ

n

+
1

ln r
ln

p′

p′
o

f =


√

3
2s : s

p′Mθ

n

+
1

ln r
ln

p′

Rsp
′
o

(3)

where Mθ represents the stress ratio at the critical state, n is a parameter that determines the shape of the yield
surface, r is a spacing ratio, that controls the location of the intersection of the critical state line and the yield
surface, p′o stands for the preconsolidation pressure and, Rs is the similarity ratio.

The similarity ratio, Rs, is defined as the ratio of the size of the subloading surface to that of the normal yield
surface. It serves as a general measure to describe the extent of approach to the normal-yield surface (see eq. (7))
(Hashiguchi [5]). Rs = 0 corresponds to the null stress state, 0 < Rs < 1 corresponds to the subyield state, and
Rs = 1 corresponds to the normal yield state, where the stress lies on the normal yield surface (Hashiguchi et al.
[4]).
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For a non-associative plastic model, the flow rule may be expressed by eq. (4)a. CASM assumes a non-
associative flow rule, and eq. (4)b expresses the plastic potential function, denoted as g (Mánica et al. [13]).

ϵ̇p = γ̇
∂g

∂σ
g =


√

3
2s : s

p′Mθ

m

+m− y(m− 1)

p′
− 1 (4)

where γ̇ denotes the plastic multiplier, m is a parameter that governs the shape of the function, and y must be
solved for the current stress state.

Subloading surface plasticity differs from classical plasticity in that it assumes that the current stress state
always lies on the normal yield surface and employs a more relaxed version of the Kuhn-Tucker conditions. Plastic
straining occurs when the loading condition is satisfied:

γ̇ > 0 if
∂f

∂σ
: De : ϵ̇ > 0 (5)

γ̇ = 0 if
∂f

∂σ
: De : ϵ̇ ≤ 0 (6)

where De is the fourth order elastic stiffness tensor.

During elasto-plastic loading, the similarity ratio (Hashiguchi [19]) evolves as:

Ṙs = U(Rs)γ̇ (7)

U(Rs) =
u

tan
(
π
2Rs

) (8)

where U(Rs) is a monotonically decreasing function of Rs, and u is a constitutive parameter.

CASM adopts the same hardening rule as the modified Cam-Clay model:

ṗ′o =
p′o

λ∗ − κ∗ ϵ̇
p
v (9)

where λ∗ = λ/(1 + eo) is the slope of normally-consolidated in a volumetric strain-logarithmic mean stress
compression plane.

3 Implicit numerical integration

Two fundamental operations are involved in the integration of the constitutive relations: the state update
procedure and the computation of the consistent tangent operator. In order to solve the incremental constitutive
problem, in this work, a fully implicit scheme is employed, commonly known as the backward Euler scheme (Neto
et al. [20]). The stress integration algorithm consists of two steps namely the elastic predictor and, if the trial state
does not satisfy the loading condition defined by subloading plasticity, the plastic corrector.

3.1 Elastic predictor

In the first step, an elastic regime is assumed, where plastic internal variables remain constant. In this work,
stress integration is performed in terms of p′ and s, as it allows for analytical integration of the volumetric elastic
model (see eq. (11)) (Rouainia and Muir-Wood [6]). Assuming an elastic regime, the plastic multiplier is set to
zero, i.e. ∆γn+1 = 0 and consequently:
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ϵpvn+1
= ϵpvn p′on+1

= p′on (10)

Integrating analytically the volumetric part of the elastic model gives:

p′n+1 = p′n exp

(
∆ϵvn+1

κ∗

)
(11)

Whereas deviatoric stresses can be obtained as:

sn+1 = sn + 2Gn+1∆ϵdn+1
Gn+1 =

3(1− 2µ)

2(1 + µ)

p′n+1

κ∗ (12)

where the subscript n+ 1 indicates that all values are obtained at the end of the increment.

Therefore, eq. (10)-eq. (12) defines an explicit approximation of the stress state at n + 1 obtained using an
implicit time marching scheme.

3.2 Plastic predictor

In contrast to the classical elastoplasticity framework, the subloading surface approach replaces, the Kuhn-
Tucker conditions with the loading condition (Hashiguchi [19]). Consequently, once the elastic trial predictor has
been computed, the loading condition is evaluated to determine the admissibility of the trial state. If the loading
condition is not met, a plastic correction becomes necessary. In particular, the plastic correction is only applied in
cases where ∂f/∂σ : De : ϵ̇ is positive.

During the plastic corrector step, all equations of the model are discretized using a backward Euler approx-
imation. The discrete form of the flow rule, which separates volumetric and deviatoric plastic strains, can be
expressed as:

∆ϵpvn+1
= ∆γn+1

∂g

∂p′n+1

= ∆γn+1

(
−m

( √
3J

Mθp′n+1

)m
1

p′n+1

+
y(m− 1)

p′n+1
2

)
(13)

∆ϵpdn+1
= ∆γn+1

∂g

∂sn+1
= ∆γn+1

(
−m

( √
3J

Mθp′n+1

)m
1

J

)
∂J

∂sn+1
(14)

where J is the second invariant of the deviatoric stress tensor.

Introducing these two equations into the elastic model, we can derive the following approximations for the
mean effective stress and deviatoric stress:

p′n+1 = p′n exp

(
∆ϵvn+1

−∆ϵpvn+1

κ∗

)
(15)

sn+1 = sn + 2Gn+1

(
∆ϵdn+1 −∆ϵpdn+1

)
(16)

The equation describing the evolution of the preconsolidation pressure is integrated analytically. By intro-
ducing the definition of the increment of volumetric plastic strains, it can be expressed as:

p′on+1
= p′on exp

(
∆ϵpvn+1

λ∗ − κ∗

)
(17)
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Finally, the implicit integration of the differential equation describing the evolution of the similarity ratio, Rs,
yields:

Rsn+1
= Rsn + U(Rsn+1

)∆γn+1 (18)

Equation (11) to eq. (18) define a system of non-linear equations, whose residual can be expressed as:

rn+1 =



p′n+1 − p′n exp

(
∆ϵvn+1

−∆ϵpvn+1

κ∗

)
p′on+1

− p′on exp

(
∆ϵpvn+1

λ∗−κ∗

)
(√

3
2 sn+1:sn+1

p′
n+1Mθ

)n

+ 1
ln r ln

p′
n+1

Rsn+1
p′
on+1

sn+1 − sn − 2Gn+1

(
∆ϵdn+1

−∆ϵpdn+1

)
Rsn+1

−Rsn − U(Rsn+1
)∆γn+1

(19)

where the unknown variables are:

vn+1 =
[
p′n+1, p

′
on+1

, sn+1,∆γn+1, Rsn+1

]
(20)

This system of equations is solved iteratively using the Newton-Raphson method, which can be expressed as:

vn+1 = vn+1 + δvn+1 [Ξn+1] δvn+1 = −rn+1 [Ξn+1] =
∂rn+1

∂vn+1
(21)

where [Ξn+1] represents the partial derivatives of rn+1 with respect to the unknown variables vector vn+1. The
iterative process concludes once the norm of the residual falls below a prescribed tolerance, i.e., ∥rn+1∥ < εr,
where εr is the tolerance. In this work εr = 5× 10−13.

The consistent tangent (stiffness) operator is the derivative of the stress with respect to the strain increment,
a concept initially proposed by Simo and Taylor [21]. Hence, the incremental stress updating procedure involves
linearization, with the purpose of achieving quadratic rates of asymptotic convergence in iterative finite element
solutions. This approach is necessary since the continuum stiffness matrix does not guarantee this quadratic con-
vergence (Simo [18]; Simo and Hughes [8]). Equation (22) expresses the consistent tangent operator (Dn+1).

Dn+1 =
dσn+1

d∆ϵn+1
=

∂σn+1

∂vn+1

dvn+1

d∆ϵn+1
= −∂σn+1

∂vn+1

[
∂rn+1

∂vn+1

]−1
∂rn+1

∂∆ϵn+1
(22)

4 Simulation of laboratory tests

In this section, good-quality laboratory tests conducted on Boston Blue Clay (BBC - Braathen [16]; Pestana
et al. [17]) were chosen to demonstrate the performance of the implicit algorithm. To showcase the capabilities
of the model, simulations of compression triaxial tests under undrained conditions were conducted in SoilTest
(PLAXIS [15]), a module based on a single stress point, i.e., a mesh and the geometric model is not necessary.
Additional simulations were conducted using a classical elasto-plastic implementation of CASM (Mánica et al.
[13]).

The material parameters used in the simulations are as follows: λ = 0.178, κ = 0.04, µ = 0.24, p′o = 588.4
kPa, r = 3.12, n = 1.58, m = 2.453 and M = 1.353. The simulations were performed for three different
values of initial over-consolidation ratio (OCR): OCR = 1, OCR = 4 and OCR = 8. Moreover, for normally
consolidated BBC (OCR = 1), the void ratio is eo = 0.88; while for over-consolidated BBC (OCR = 4) and
(OCR = 8) are eo = 0.904 and eo = 0.905, respectively. The parameter controlling the evolution of the similarity
ratio is u = 5.

Figure 1(a) presents the stress path of the test along with the evolution of deviatoric stress in terms of axial
strain. The simulations exhibit good agreement with laboratory tests. It is noted that in the cases over-consolidated
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Figure 1. Comparison of predicted and measured undrained triaxial loading behaviour of BBC. OCR = 1 (green),
OCR = 4 (blue) and, OCR = 8 (red)

(OCR = 4) and (OCR = 8), the subloading version of CASM accurately predicts a smooth transition from elastic
to elasto-plastic regime, a feature observed in the laboratory experiments. It is noted that, σv is the vertical stress
and σh is the horizontal stress.

Finally, in Fig. 1(b), the model prediction is compared to laboratory tests in the deviatoric stress vs. axial
strain, ϵa, space. The results show that for normally-consolidated BBC, both simulations accurately reproduce the
expected behaviour. However, in the case of the over-consolidated BBC, the laboratory tests exhibit deviatoric
stress higher than those obtained in the simulations. Nevertheless, the model’s implementation ensures a smooth
transition in both cases.

5 Conclusions

Implicit integration provides an adequate algorithm for evaluating stress increments within the subloading
surface framework. In this study, an implicit stress integration to discretize the constitutive equations of a critical
state constitutive model when reformulated using the subloading plasticity approach.

The constitutive model implemented in this work demonstrated the ability to reproduce a smooth transition
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from elastic to elastoplastic regime, a characteristic commonly observed in soil behaviour. Numerical simulations
of laboratory tests show adequate performance of the model.
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