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Abstract.
Metamaterials can be divided into passive and active types, with the latter incorporating programmable de-

vices in their design. While active metamaterials promise resilience against manufacturing inconsistencies and
defects, a notable gap exists in the current literature regarding metastructure stability and performance. His-
torically, the phenomena linked to non-Hermitian systems were investigated in quantum mechanics, but recent
breakthroughs have translated them into classical mechanics. This research investigates the stability of active
metamaterials through numerical simulations of a one-dimensional structure, wherein each unit cell showcases
periodic feedback interactions. Stability limits for different feedback laws are determined. Central to this investi-
gation is the relationship between closed-loop stability and directional propagation driven by the topological skin
effect. This analysis entails exploring how distinct control law strategies affect stability and performance.
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1 Introduction

Applications of periodic systems in mechanical engineering involve the design of phononic crystals and
acoustic metamaterials [1, 2]. In this context, non-Hermitian systems [3] have been investigated for macroscopic
elastic/acoustic metamaterials. Among their key properties, these systems primarily exhibit large non-reciprocity
associated with directional wave amplification and attenuation. Topological modes associated with the Non-
Hermitian Skin Effect (NHSE), where many bulk modes of a 1D system become localized at a boundary, have
been predicted and experimentally observed [4–9]. These works illustrate the NHSE, named in analogy to the
electrical conductor effect of the same name, not found in Hermitian (conservative) counterparts. The NHSE has
been used in the design of active functional metamaterials such as sensors [10], non-reciprocal robots using feed-
back loops [11, 12], and control of filaments and membranes in biological systems using feedforward loops [13].
In practice, the NHSE manifests as topological modes localized at finite domain boundaries and can be predicted
by momentum space topology.

This paper employs simple lattice models (lumped-parameter systems) of non-Hermitian, non-reciprocal
metamaterials. The dispersion diagrams of this metamaterial and the implications of NHSE on this type of fi-
nite structure have already been demonstrated in a previous work [14], in which, spectral elements were used to
show that this periodic system exhibits the wave behavior associated with a non-trivial topology on the reciprocal
space. The winding number, a topological invariant, was determined by directly observing the dispersion relation.
It was used to predict the localization of the skin modes of the finite system, derived from truncating the metamate-
rial at both ends under arbitrary boundary conditions. Finite element models were used to compute the eigenmodes
(skin modes) of this flexible structure [15]. The non-reciprocal wave propagation due to the NHSE was verified by
the time domain response of the system to a transient external force.

Active mechanical systems utilizing feedback loops have been extensively explored in recent literature [8, 9,
11, 12, 16–18]. However, the investigation of periodic structures with feedback interactions is still in its earlier
stages, demanding further understanding of their fundamental properties and practical applicability. This paper
provides a preliminary examination of the stability and performance analysis of metastructures tailored to realize
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the NHSE. First, Section 2 presents the model of the structure under investigation. Section 3 offers an attempt to
quantify the NHSE in these structures using their frequency response, also highlighting the relationship with the H2

norm, a recognized performance metric. Section 4 delves into the effects of proportional and derivative feedback
strategies on the closed-loop system’s stability, with a noteworthy observation concerning the minimal influence
of the damping factor. Finally, Section 5 concludes by summarizing the primary contributions and findings.

2 The lumped parameter model

The metamaterial under study is a one-dimensional classical mechanical waveguide exhibiting both non-
Hermitian and non-reciprocal properties. This behavior is achieved by periodically applying feedback interactions
in an asymmetrical fashion. The associated system has N degrees of freedom, represented as qi(t), and features
boundary masses fixed to rigid walls on either ends, as shown in Fig. 1.

q1(t) q2(t)
qN(t)

k

b

fN-1(t)f1(t)

m

Figure 1: Active metastructure model with feedback forces.

In this work, the system parameters are set to N = 7 (masses), m = 1 kg and k = 10 N/m. The effects of
varying the damping factor b and the feedback gains are examined. For this system, the expression for the feedback
law fi(t) is defined as fi(t) = G(qi+1(t) − qi(t)), for 1 ≤ i ≤ N − 1, where G denotes an operation. For pure
proportional feedback, G = gp acts as a constant. Whereas for derivative feedback, the time derivative operation
is defined as G = gd d/dt.

When using the same value for all the masses, the unit cell is constituted of a single mass rather than two.
As will be demonstrated in subsequent sections, this results in a frequency response function presenting a single
passband, followed by a stop band that extends infinitely, rather than displaying two distinct bands separated by a
band gap as highlighted in the literature.

3 A metric for the NHSE

As a first attempt to systematically assess the NHSE, we employ the frequency response of the flexible
structure rather than its time response. The NHSE induces non-reciprocity in the forced harmonic response of the
structure, specifically in the context of energy localization, a phenomenon previously reported in [8]. To quantify
this, we introduce the metric A, defined by

A = | ∥q̂N∥L1
− ∥q̂1∥L1

| (1)

where q̂1(jω) and q̂N (jω) are the Fourier transforms of the displacements q1(t) and qN (t) of the first and last
masses, respectively, for a unit input force. The symbol ∥·∥L1

denotes the L1 norm defined as

∥q̂∥L1
=

∫ ∞

−∞
|q̂(jω)| dω

It can be shown that the metric A represents the absolute value of the area between the curves |q̂1(jω)| and
|q̂N (jω)|, which correspond to the magnitude of their Bode plots.

From the Cauchy-Schwartz inequality, given two signals f, g ∈ L2,

| ⟨f, g⟩L2
| ≤ ∥f∥L2

∥g∥L2
. (2)

Particularly, take z = qN − q1 the response to a unit input force.Then, f = |ẑ| is the frequency response of
the structure. Assuming, additionally, that the system is causal and asymptotically stable, as a consequence of the
Parseval theorem and the symmetry of the Fourier transform of real signals.

f =

{
≥ 0,−ω0 ≤ ω ≤ ω0,

0, otherwise,

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



Danilo Braghini, Juan F. Camino, José R.F. Arruda

Moreover, take

g =

{
1,−ω0 ≤ ω ≤ ω0,

0, otherwise.

Thus,

∥g∥L2
=

√(∫ ∞

−∞
|g(jω)|2dω

)
=

√
2ω0, (3)

and

| ⟨f, g⟩L2
| =

∣∣∣∣∫ ω0

−ω0

f(jω)dω

∣∣∣∣ ,
which equals ∥f∥L1

=
∫ ω0

−ω0
f(jω)dω since f(jω) ≥ 0 ∀ω ∈ R. Moreover, f(jω) = |ẑ(jω)| = |q̂N (jω) −

q̂1(jω)| ≥ ||q̂N (jω)| − |q̂1(jω)||. The last inequality can be proved ∀z1, z2 ∈ C and implies that

∥f∥L1
=

∫ ∞

−∞
|q̂N (jω)− q̂1(jω)|dω

≥
∫ ω0

−ω0

||q̂N (jω)| − |q̂1(jω)||dω

≥
∣∣∣∣∫ ω0

−ω0

|q̂N (jω)|dω −
∫ ω0

−ω0

|q̂1(jω)|dω
∣∣∣∣ = A. (4)

Finally, recalling the definition of the H2 norm of a linear system S with single input and single output z, [19],
∥S∥H2

= ∥ẑ∥L2
, and equations 2, 3, and 4 we have the following relation between the H2 norm and the previously

defined metric.

A ≤ ∥z̃∥H2

√
2ω0 (5)

4 Results

The magnitudes of the Bode plots of the passive structure, for an external force F̂ applied at the middle
(4th mass) and measured at the left (q̂1) and right (q̂7) ends, are identical. Consequently, A = 0. This is due to
the symmetry of the structure. As the following subsections will demonstrate, by applying feedback, the system
becomes non-reciprocal, which translates into asymmetric results. As previously highlighted in [8], the more
pronounced the difference between the responses at the two ends (corresponding to higher values of A), the more
evident the NHSE becomes in the time domain response of the structure.

A closed-loop dynamical system is asymptotically stable if and only if all of its poles have strictly negative
real parts. In other words, the maximum real part of the poles, ℜ(λ)max, must be negative. As our simulations
show that this condition is met only for gains g ∈ I = (g0, g1). For these values, the maximum value of the
metric A and the H2 norm that can be achieved with each feedback strategy are computed. The optimal values are
achieved with feedback gains gA, g2 ∈ I . In practice, however, small uncertainties in the system parameters may
lead to pole variations. Thus, for robustness purposes, the poles should stay as far as possible from the imaginary
axis.

4.1 Proportional Feedback

Table 1 shows that the interval I does not change considerably with damping, neither does A and the H2

norm. Non-intuitively, this result seems to imply that the stability issue cannot be solved by adding viscous
damping alone. Actually, the damping factor within its usual range for mechanical systems has little influence on
the system dynamics. Moreover, both A and the H2 norm assume higher values at the instability limits, which can
be observed in the computed ℜ(λ)max values. These results can be visualized in the plot of Fig. 5 (a). Note that
the undamped structure (b = 0) has all eigenvalues on the imaginary axis. For a selected value of gain, Fig. 4 (a)
shows a significant value of A, expressed by the asymmetric behavior of the frequency response.

Additionally, Fig. 2 shows the root locus of the closed-loop structure, i.e., how the poles of the closed-loop
system evolve with varying values of feedback gain.
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Table 1: Proportional feedback

b g0 g1 max A gA max |H2| g2 ℜ(λ)max for gp = gA

0 ∄ ∄ ∄ ∄ ∄ ∄ 0

0.01 -32.46 5.38 2.25 -32.45 14.23 -32.45 -0.0007

0.05 -33.08 5.58 2.09 -33.07 14.06 -33.07 -0.0028

0.1 -33.17 5.60 1.96 -33.16 14.08 -33.16 -0.0053

0.2 -33.24 5.62 1.50 -33.22 12.91 -33.23 -0.0103

0.5 -33.52 5.65 1.2 -33.50 11.21 -33.51 -0.0232

1 -34.38 5.73 1.28 -34.37 12.50 -34.37 -0.0327

1.5 -35.54 5.86 0.91 -35.53 7.75 -35.53 -0.0251

2 -36.72 6.03 0.79 -36.70 11.43 -36.71 -0.0061

(a) (b)

Figure 2: Root locus plot for the structure with gd = 0, b = 0.01 and (a) gp < 0 (b) gP > 0. Magenta x denotes
the poles of the open loop structure, with gp = gd = 0.

4.2 Derivative Feedback

Table 2 shows that, for any negative gain, the derivative feedback results in a stable closed-loop structure,
as can be seen in Fig. 3. Again, both A and the H2 norm show little or no influence of the damping factor.
However, in Fig. 5 (b), the performance of the structure as a function of the feedback gain shows a very different
behavior compared to the proportional feedback case. Now, both A and the H2 norm have a maximum value
inside I , although assuming considerably lower values. Also, for a selected gain value, Fig. 4 (b) shows again the
asymmetric behavior of the frequency responses. Regarding stability, ℜ(λ)max is considerably further away from
the imaginary axis compared to the proportional feedback case.

5 Conclusion

It was shown that increasing the viscous damping has none or little effect on the dynamics of the investigated
structure, while the feedback law can completely change its behavior. Further investigations are required and will
be undertaken with the aim of designing a metastructure that maximizes A while maximizing ℜ(λ)max. Together
with the analysis of the wave physics and using established topology tools, the NHSE must be confirmed on the
designed structure. By addressing this problem, this work contributes by reducing the need for heuristic solutions
in the design of active periodic metastructures exhibiting the non-Hermitian skin effect.
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Table 2: Derivative feedback
b g0 g1 max A gA max |H2| g2 ℜ(λ)max

0 −∞ 0 0.05 -10.93 0.12 -2.44 -0.1579

0.01 −∞ 0 0.05 -10.93 0.12 -2.48 -0.1582

0.05 −∞ 0 0.05 -10.91 0.11 -2.64 -0.1597

0.1 −∞ 0 0.05 -10.88 0.11 -2.82 -0.1615

0.2 −∞ 0 0.05 -10.84 0.10 -3.16 -0.1651

0.5 −∞ 0 0.05 -10.78 0.09 -4.06 -0.1758

1 −∞ 0 0.05 -10.84 0.08 -5.16 -0.1926

1.5 −∞ 0 0.05 -11.01 0.07 -6.03 -0.2077

2 −∞ 0 0.05 -11.27 0.06 -6.82 -0.2232

(a) (b)

Figure 3: Root locus plot for the structure with b = 0.01, gp = 0 and (a) gd < 0 (b) gd > 0.

L

R

(a)

L

R

(b)

Figure 4: Frequency responses of the structure with: (a) gp = −30 and gd = 0. (b) gp = 0 and gd = −11.
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(a) (b)

Figure 5: Performance (a)varying gp = g with b = 0.01 and gd = 0. (b)varying gd = g with b = 0.01 and gp = 0.
The figures covers values of gain within the interval I .
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