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Rua Mendeleyev 200, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
j265797@dac.unicamp.br, zema@fem.unicamp.br
2ENSIM, University of Maine
1 Rue Aristote, 72000 Le Mans, France
naudat.lucile.p@gmail.com

Abstract. In the last decades, phononic crystals (PCs) have been investigated extensively and proposed for noise
and vibration attenuation, due to the bandgap generated by a destructive wave propagation interference. However,
PCs are limited by the characteristic of anisotropy and the periodic cell size that must be of the same order of
magnitude as the wavelength in the direction of wave propagation, which are determinants for the band gap width
and attenuation. The Acoustic Black Hole (ABH) effect has also been used to attenuate structural vibrations by
slowing the waves in a thin-walled structure with a power-law thickness variation. The aim of this paper is to es-
tablish reliable numerical approaches for designing and modeling an effective passive structural device combining
periodicity and ABH effects to attenuate vibrations efficiently. This structural PC-ABH device is modeled by the
Spectral Element (SE) method and verified by the Wave Spectral Element (WSE) method. Simulated examples are
performed and the results are compared between the methods and their efficiency to extended band gap widths and
to attenuate the structural vibrations are evaluated. .
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1 Introduction

Over the last decades, the study of the theory of elastic wave propagation has generated significant interest
due to their unique properties and effects and was initiated by Mead [1], that furthermore the Bragg scattering
effect was enlightened for revealing the phenomenon of bandgaps, that are Bragg-type forbidden bands in the
frequency range allowed for Bragg conditions, and the ability to slow the velocity of sound. In recent decades,
phononic crystals (PCs) were conceived with elastic waves propagating in artificially composed periodic structures
and received great attention in the mechanical engineering field.

Phononical crystals (PCs) as acoustic or structural metamaterials are artificial periodic composite materials
consisting of periodically spaced individuals for creating a unique characteristic of a bandgap that exhibits attenu-
ation in propagation due to the effects of Bragg scattering or local resonance.[2]. The formation of these forbidden
bands has been researched in a way to control and manipulate phonons, sound, and other waves, so the ”wave
filtering” of the PCs allows different applications in engineering. Furthermore, creating a PC with a full bandgap
requires designing different topological structures with different geometric individuals or with different periodic
lattices.

Similarly, structures called Acoustic Black Holes are well researched and applied in beams, spirals, tubes and
plates for wave attenuation effects in the last four decades. The physical principle first explored by Mironov [3],
consists in capturing elastic waves in a geometry with a cross-sectionally varying part whose thickness decreases
according to a power-law profile with smoothing criteria of h(x) = ϵxn where n is the power-law (n ≥ 2), h is the
height of the cross-section, ϵ is a constant and x varies from the wedge of the structure. [4]. In recent works, studies
have focused on exploring the properties of phononic beams with embedded ABHs for obtaining the bandgaps to
improve the effects of wave attenuation. Various notable methods have been proposed to analyze the dynamic
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problems with periodic structures, such as the Spectral Element Method and the Wave Spectral Element Method
(WSEM).

In this work, an investigation was conducted in a periodic structure with a tapered beam included for wave
attenuation, inspired by the ABH effects. The Spectral Element Method (SEM) and the Wave Spectral Element
Method (WSEM) were employed for vibration control, bandgap formation, and parametric variation analysis.

2 The Proposed Structure and Methods Applied

This section shows the simplified basic structure evaluated in this work represented in Figure 1 and the
formulation utilized for modeling the ABH by the SEM and WSEM methods. The model consists of a structure
composite of two ABH elements facing each other and one uniform beam at each end of the structure, containing
in total five nodes and 2 degrees-of-freedom (DOFs) per node. The structure can be arranged in the form of a 1×n
matrix, where n represents the periodic expansion of the structure in the x direction. The total length of the cell is
defined by equation 1.

Node 1 Node 2
Node 3 Node 4

Node 5
DOF (1,2) DOF (3,4)

DOF (5,6) DOF (7,8)

DOF (9,10)

Uniform beam Uniform beamAbhdecr Abh

Figure 1. Structural periodic model proposed.

L = 2.(Labh + Lbeam) (1)

2.1 Tapered Beam Spectral Model

The ABH model consists of a tapered beam spectral element ([5]) with two nodes with 2 DOFs/node.
The Fig. 2 showns the spectral model of the ABH with length L, displacements {w1, θ1, w2, θ2} and forces
{V1,M1, V2,M2} in node 1 and 2 respectively. The relation within the cross-section areas of the two nodes
is given by the amplifying factor c > −1 that varies (1 + c) from node 1 to node 2 in the cross-section area
A(x) = A1(1 + c(x/L))n and in the inertial moment I(x) = I1(1 + c(x/L))n+2, where n is the power-law, that
defines the profile of the structure, as shown in Fig. 3a-b

Figure 2. Tapered beam model with two nodes by SEM.
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(a) (b)

Figure 3. Different profiles of the tapered beam model defined by n value for: (a) n = 1, (b) n = 2 .

Taking in consideration the general balance equation of the beam, the solution for a tapered beam case is
defined by

W (ϕ) =
1

ϕn
{C1Jn(ϕ) + C2Yn(ϕ) + C3In(ϕ) + C4Kn(ϕ)}, (2)

where ϕ = (2λ1/c)
√
ξ with λ1 = L 4

√
ρA1ω2/EI1, ξ = 1 + c(x/L), Ci(i = 1, . . . , 4) are constants and

J, Y, I,K are Bessel functions of the first, second, first modified and second modified types respectively. Through
the derivations of the displacement equations, the angular displacement, bending moment, and shear force are
written as:

θ(ξ) = − λ1

Lϕn
√
ξ
{C1Jn+1 + C2Yn+1 − C3In+1 + C4Kn+1}, (3)

M(ξ) = −EI1ξ
(n+1/2)λ1

3

L3ϕn
{C1Jn+1 + C2Yn+1 + C3In+1 + C4Kn+1}, (4)

V (ξ) = −EI1ξ
(n+1)λ1

2

L2ϕn
{C1Jn+2 + C2Yn+2 + C3In+2 − C4Kn+2}. (5)

Applying the boundary conditions for displacements in each node and substituting in Eq.2, obtain

w1

θ1

w2

θ2

︸ ︷︷ ︸
u

=


γ1Jn(α) γ1Yn(α) γ1In(α) γ1Kn(α)

−δ1Jn+1(α) −δ1Yn+1(α) δ1In+1(α) −δ1Kn+1(α)

γ2Jn(β) γ2Yn(β) γ2In(β) γ2Kn(β)

−δ2Jn+1(β) −δ2Yn+1(β) δ2In+1(β) −δ2Kn+1(β)


︸ ︷︷ ︸

A



C1

C2

C3

C4

︸ ︷︷ ︸
c

, (6)

where α = 2λ1/c, γ1 = 1/αn, δ1 = λ1/(Lα
n) are equations defined for node 1 and β = α

√
(1 + c),

γ2 = 1/βn, δ2 = λ2/(Lβ
n), λ2 = λ1/

√
(1 + c) are defined for node 2. Similarly, applying the boundary

conditions for the forces in each node and replacing in Eq. 4 and 5, gives

V1

M1

V2

M2

︸ ︷︷ ︸
f

=


σ1Jn+1(α) σ1Yn+1(α) σ1In+1(α) −σ1Kn+1(α)

−τ1Jn+2(α) −τ1Yn+2(α) −τ1In+2(α) −τ1Kn+2(α)

−σ2Jn+1(β) −σ2Yn+1(β) −σ2In+1(β) −σ2Kn+1(β)

τ2Jn+2(β) τ2Yn+2(β) τ2In+2(β) τ2Kn+2(β)


︸ ︷︷ ︸

B



C1

C2

C3

C4

︸ ︷︷ ︸
c

, (7)

where τ1 = EI1λ
2
1γ1/L

2, σ1 = τ1λ1/L, τ2 = EI2λ
2
2γ2/L

2, σ2 = τ2λ2/L. Doing c = A−1u. and substituting
in Eq.(6), is obtained f = BA−1u that can be rewritten as D = BA−1 that represents the spectral dynamic stiffness
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of the tapered beam:

D =


d11 d12 d13 d14

d22 d23 d24

sym d33 d34

d44

 , (8)

where the matrix terms can be seen in [5].
For a reverse modelling of the tapered beam, that is, the decreasing pattern that is shown in Fig.2, the posi-

tioning of the elements is switched in Eq. (8), that gives the matrix Ddecr defined by

Ddecr =


d33 d34 d31 d32

d43 d44 d41 d42

d13 d14 d11 d12

d23 d24 d21 d22

 , (9)

2.2 Periodic Tapered Beam Model

For solving periodic structure problems, one of the most efficient methods is the application of the Wave
Spectral Element Method (WSEM) for finding solutions of the whole structure with low computational cost, where
by calculating the dispersion diagram it will be possible to analyze the forbidden gaps (bandgaps), by Floquet-
Block periodicity. Considering the Wave Finite Element Method (WFEM) developed by Mencik [6], in the same
way the WSEM utilizes a wave propagation approach in a periodic structure. In Eq.(8), the structure is separated
into inner degrees of freedom defined by i, the left ones by l and right ones by r.

Dii Dil Dir

Dli Dll Dlr

Dri Drl Drr



ui

ul

ur

 =


0i

Fl

Fr

 (10)

Reducing its order, the condensed stiffness matrix is given byDll Dlr

Drl Drr

ul

ur

 =

Fl

Fr

 (11)

where Dll = Dll - DliD
−1
ii Dil, Drl = Drl - DriD

−1
ii Dil, Dlr = Dlr - DliD

−1
ii Dir and Drr = Drr - DriD

−1
ii Dir.

In a way to avoid ill-conditioning, according to Zhong and Williams [7] the matrix from Eq.(11) is rewritten as

ql =

 In 0

−Dll −Dlr


︸ ︷︷ ︸

Li

ul

ur

︸ ︷︷ ︸
ξi

and qr =

 0 In

Drl Drr


︸ ︷︷ ︸

Ni

ul

ur

︸ ︷︷ ︸
ξi

(12)

where ql = ul Fl
T and qr = ur Fr

T . In is the identity matrix with the same order as the degrees of freedom
on the left or right side. Taking into account the periodicity of the structure, substituting a relation qr

m = qm+1
l

in Eq.12 and applying the Floquet-Bloch theorem, gives:

eµLiξi = Niξi (13)

where µ = −jkL corresponds to the wave propagation constant with j as imaginary number, k is the wave number
, L the length of the cell and Lξi −Nξi are the eigenvectors.

3 Numeric Results

In this section, we present the results obtained for the cell constructed using the previously described SEM
method.
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Table 1. Fixed parameters of the cell

Constitutive relation Nomenclature Value Unit

Mass Density ρ 7850 kg/m3

Young’s Modulus E0 210.109 Pa
ABH Length Labh 40.10−2 m
ABH Height habh 10.10−3 m
Beam Length Lbeam 40.10−2 m

Amplifying Factor c 3 ∅

Table 2. Parameter dependent on the value of the power-low n

Power-law n [∅ ] 1 2

ABH Depth babh [m] 20.10−3 5.10−3

The fixed key parameters and dimensions of the cell are summarized in Table 1. All other dimensions directly
result from these values. However, one dimension of ABH varies based on the power coefficient n, and these values
are described in Table 2.

(a) (b)

(c)

Figure 4. Dispersion diagram of the cell, with its real part shown in red/orange and its imaginary part in blue,
expressed as a function of frequency over a range of 0 to 3000 Hz. Solid lines correspond to dispersion diagrams
with n = 1, while dashed lines correspond to n = 2 and dash-dotted lines to n = 3. Additionally, each figure
presents the results with a varying loss factor, describing the material of the cell. Figure (a) describes the dispersion
diagram with a loss factor of 0.001, figure (b) with 0.01, and figure (c) with 0.05.

On each of these figures, the emergence of band gaps can be observed. These correspond to portions where the
real part is nonzero, forming a plateau, while the imaginary part is non-zero and varies according to the frequency.
The visibility of the band gaps varies depending on the value of the loss factor. In figure (a), the band gaps are
highly pronounced due to a low loss factor (0.001). However, for a loss factor of 0.01, depicted in figure (b),
they are much less visible, almost fading away. This is further exemplified in figure (c), illustrating the dispersion
diagram with a loss factor of 0.05, where the band gaps are barely noticeable.

Furthermore, we can observe the distinction induced by the power-law factor n. A slight frequency shift
between the curves for can be noticed, regardless of the loss factor. For n = 2 and n = 3, the peaks are shifted
towards higher frequencies compared to those for n = 1. Additionally, the value of n does not impact the amplitude
of the real part, unlike the imaginary part. In the case of n = 2 and n = 3, the absolute value of the imaginary part
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of the dispersion coefficient is higher.

4 Conclusions

An tapered beam proposed as an ABH was modelled with Spectral Element Method, embedded in a periodic
structure and was investigated using the Wave Spectral Element Method. The analysis of the dispersion diagram
was conducted for the periodic cell with different loss factors and n values, revealing that at higher values of
loss factors, the bandgaps are barely noticiable and the results for n = 2 and n = 3, the peaks shifted to higher
frequencies, giving a better result in wave attenuation.
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