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Abstract. The numerical modelling of viscoelastic behavior of large concrete structures can be optimized by 

representing the compliance function in terms of series of exponentials, usually termed Dirichlet series, Prony 

series, or Generalized Kelvin Chain mechanical model. The viscoelastic behavior of concrete is usually described 

in terms of a compliance function obtained from classical creep tests or design codes, being, thus, necessary to 

devise a workflow to derive the set of retardation times and moduli that completely describe the correspondent 

Generalized Kelvin Chain model. Direct fitting of the Generalized Kelvin Chain model to a given compliance 

function is usually not feasible, as the problem becomes ill-posed if the chain contains a reasonable number of 

units, which is necessary for correct representing the viscoelastic behavior. The present work presents an open-

source Python algorithm to compute the parameters of a Generalized Kelvin Chain model associated to a set of 

aging compliance functions. The use of the algorithm is exemplified by computing the Generalized Kelvin Chain 

model associated to compliance functions obtained from Eurocode 2 and fib Model Code 2010, which are common 

viscoelastic models used in engineering practice. 
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1  Introduction 

Consideration of delayed deformation caused by creep is essential in serviceability checks of deformation-

sensitive concrete structures, such as reactor vessels, shells, and large span bridges, whose functionality and safety 

can be critically affected if unpredicted displacements start to develop due to the viscoelastic behavior of concrete 

[1]. Efficient numerical modelling of viscoelastic behavior of large concrete structures, now routinely performed 

with Finite Element Method software, demands that the viscoelastic constitutive equation be written in a 

differential rather than in an integral form [2], [3]. This can be done by writing the compliance function not as a 

continuous single function, but as a series of exponentials, in what is usually referred to as Dirichlet series, Prony 

series, or, to emphasize its relation to the Kelvin viscoelastic mechanical model, the Generalized Kelvin Chain 

model [1]. In practical problems involving concrete structures, this approach involves going from the compliance 

function, which is the experimental property obtained in classical creep tests or provided by design codes, to a 

Generalized Kelvin Chain model, which is completely defined by the set of retardation times and modulus of all 

its Kelvin units [2]–[4]. Direct fitting of the Generalized Kelvin Chain model to compliance functions, if not 

performed with proper precautions, is usually not feasible, as the problem becomes ill-posed if the chain contains 

a reasonable number of units, which is however necessary for correct representing the viscoelastic behavior. This 

matter has been addressed by some previous publications, such as [1], [2], [5]. 

This work had the object to develop an open-source algorithm to generate the coefficients of a Generalized 

Kelvin Chain model associated to a given set of aging compliance functions. A feature for data presmoothing was 

also implemented, to aid when dealing with noisy or missing point data in compliance functions, which is a typical 

situation in experimental data. Also, algorithms to compute compliances accordingly to Eurocode 2 [6] and fib 

Model Code 2010 [7] design codes were implemented to provide means to generate data for validation of the 

fitting algorithm. 



An algorithm to compute the parameters of a Generalized Kelvin Chain model to represent aging creep of concrete 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  
Porto – Portugal, 13-16 November, 2023 

2  Background theory 

2.1 Generalized Kelvin Chain model 

The Generalized Kelvin Chain model can be intuitively understood on the basis of simple viscoelastic 

mechanical models. Usually, viscoelastic mechanical models are composed by combinations of two basic 

mechanical elements: the spring and the damper, characterized, respectively, by an elastic constant E and a 

viscosity μ [8]. Different arrangements of these basic mechanical elements (e.g., in series, in parallel, and a mix of 

both) give rise to models capable of representing a wide range of behaviors. When a spring and a damper are 

arranged in a parallel fashion, the resultant model is called a Kelvin or a Kelvin-Voigt model (Figure 1a), and the 

arrangement in series of several Kelvin models or units, each with its own characteristic properties (Ei, μi), leads 

to the Generalized Kelvin Chain model (Figure 1b). 

  

(a) (b) 

Figure 1 Viscoelastic models: (a) Kelvin model; (b) Generalized Kelvin Chain model. In the models, E stands for 

elastic constant and μ is the viscosity. Adapted from [8]. 

Because each Kelvin unit may have different individual properties, the Generalized Kelvin Chain model 

presents a great flexibility in representing different viscoelastic behaviors and, thus, is widely used in the literature 

for viscoelastic behavior modeling [2]–[4], [9]. Also, in the context of concrete creep, in which aging takes an 

important role, a Generalized Kelvin Chain model allows for each Kelvin model to possess a different aging 

kinetic, in which case the elastic constant E and the viscosity μ are not constants but may be dependent on the age 

of the material. This helps the model to better adhere to real concrete creep data more easily. The mathematical 

representation of the lumped compliance of an aging Generalized Kelvin Chain model, composed by n aging 

Kelvin unit, is given by: 

 

𝐽(𝑡, 𝑡′) = ∑ [
1

𝐸𝑖(𝑡′)
(1 − 𝑒−

(𝑡−𝑡′)
𝜏𝑖

⁄ )]

𝑛

𝑖=1

 (1) 

In which: the two independent variables t and t’, required to represent the aging viscoelastic problem and 

computed using the same time reference (i.e., if 𝑡 = 0, then 𝑡′ = 0), represents, respectively, the time along which 

the viscoelastic phenomenon will develop, and the time in which the loading was applied to the material; 𝐽(𝑡, 𝑡 ′) 

is the creep compliance, which is the material property of interest in creep problems, i.e., those problems 

represented by the strain-stress equation ε(𝑡) = σ ∙ J(𝑡, 𝑡′), with σ being the stress applied to the material in the 

time t’ and ε(𝑡) the consequent viscoelastic strain developed in time t; the coefficients 𝐸𝑖(𝑡′) are the elastic 

coefficients of the aging Kelvin models and, thus, depend on t’; 𝜏𝑖 is a property called retardation time, introduced 

to ease the mathematical notation of the problem, given, for the i-th Kelvin model, by 𝜏𝑖 = 𝜇𝑖(𝑡′) 𝐸𝑖(𝑡′)⁄  [2].  

The retardation time holds an interesting physical meaning: it is the time taken by a Kelvin model to achieve 

a strain equal to 1 𝑒⁄  of the final strain in a creep problem. In other words, it conveys the information of how fast 

or slow the viscoelastic effects of that Kelvin unit develop in time, with small retardation times representing faster 

processes in time. Sometimes the Generalized Kelvin Chain model is represented having a Kelvin model with just 

a spring term, in order to represent the instantaneous response of the material when subjected to load (i.e., the so-

called “elastic” strain). However, such approach is not mandatory, and the more general form presented in Figure 

1b and eq. (1) can be maintained if one recalls that an instantaneous response could still be represented by a very 

small retardation time, such as that 𝜏𝑖 → 0 [2].  

Equation (1) can be also referred as Prony series, if the spacing between consecutive 𝜏𝑖 is constant, and 

pertains to a more general class of series representation based on exponentials called Dirichlet series [1], [10]. 
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Such recognition opens the possibility to explore the subject from the perspective of other fields, such as 

mathematics and polymer science [4], [9]–[13]. 

2.2 Fitting a Generalized Kelvin Chain model to real data 

In practical numerical analysis of concrete structures accounting creep and aging, the model given in eq. (1) 

is the usual choice for the stress-strain constitutive equation [1], [2]. The construction of such model for a particular 

material, however, is not a simple task. The standard strategy could be to simply attempt a direct fitting of eq. (1) 

to the available viscoelastic data of the material. This data may come from experimental compliance curves 

obtained in creep tests or compliances obtained from a particular design model (such as design codes such as 

Eurocode [6] or fib Model Code [7], or theoretical models such as the B3 [14] or B4 models [15], which allow 

computing compliance curves from basic information of the material – concrete class, geometric information of 

the structural member analyzed, etc.). With the compliance data at hand, one would then determine the desired 

number of Kelvin elements (i.e., define the value of n in eq. (1)), and use any non-linear curve fitting algorithm to 

obtain the values of 𝐸𝑖 and 𝜏𝑖 that would minimize the difference between the compliances values predicted by eq. 

(1) and those from the available compliance data. If aging is involved, as in the context of this work, the procedure 

is the same, but it would be repeated for every loading age t’ of interest. 

The direct fitting approach, however, is long known to lead to an ill-posed problem, in which very different 

set of values for 𝐸𝑖 and 𝜏𝑖 lead to considerably similar results, are over-sensitive to small alterations of the data, 

lead to no convergence at all in optimization algorithms used for fitting, or may result in some negative moduli, 

for some Kelvin units, which although not mathematical incorrect should be impossible from the physical meaning 

of the problem [2], [16]. Finding the proper values of the parameters of the model in eq. (1) becomes more 

amenable if some recommendations found in the literature are followed [1], [2], [13], [17]: 

• Instead of seeking for 𝐸𝑖 and 𝜏𝑖, one can specify beforehand the values of 𝜏𝑖 and perform the fitting 

of eq. (1) over experimental data only to find 𝐸𝑖, which makes the fitting problem more amenable 

from the optimization point of view [1], [16], [17]; 

• The choice of 𝜏𝑖 is bounded: a lower bound is necessary so excessive close 𝜏𝑖’s do not lead to loss 

of uniqueness of fit, and an upper bound is necessary to ensure the 𝜏𝑖’s cover the range of retardation 

times contained in the creep data [1], [2], [17]; 

• The first retardation time, 𝜏1, should be taken as a very small value, such as 𝜏1 = 10−9 days, so the 

immediate response of the material can be properly modelled [2]; 

• The second smallest retardation time, 𝜏2, should be taken as smaller than three times the smallest 

time delay after load application, 𝜏𝑚𝑖𝑛 , for which the viscoelastic response is of interest (i.e., 𝜏2 ≤

3𝜏𝑚𝑖𝑛) [2]; 

• The largest retardation time, 𝜏𝑛, should be taken as larger than half of the largest time delay after 

load application, 𝜏𝑚𝑎𝑥 , for which the viscoelastic response is of interest (i.e., 𝜏𝑛 ≥ 0.5𝜏𝑚𝑎𝑥) [2]; 

• It is usual to uniformly distribute the retardation times in the logarithmic scale, such as that [2], [13]: 

 
 𝜏𝑖 = 10𝑖−2𝜏2  (𝑖 = 3,4, … , 𝑁) (2) 

• When fitting aging compliance functions, the loading ages and data points on each compliance curve 

should be sampled uniformly in the logarithmic scale [1]. 

In addition to these recommendations, the application of bounds in the optimization problem when 

performing the curve fitting allows to guarantee the existence of no negative moduli. Regarding such matter, 

additional recommendations to improve adequacy and physical meaning of eq. (1) to concrete creep data exist, 

such as using a slightly different forms for eq. (1) and (2) with the use of the reduced time concept [2]. Also, 

completely different approaches than outlined here also provide further assurance towards the physical meaning 

of the Generalized Kelvin Chain parameters, e.g., computation of a continuous retardation spectrum and its 

subsequent discretization in order to build the model in eq. (1) [18]–[20]. 

2.3 Creep laws for data presmoothing 

When one is working with experimental data, imprecision, scattering or loss of data, which are inherent to 
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experimental measurements, may affect the quality of a direct fitting of eq. (1). This may introduce undesirable 

features in the resultant fit, such as wavy oscillations or negative modulus in some Kelvin units [2], [5]. To mitigate 

such effects, the compliance data can be previously smoothed by fitting a function of choice, which is then used 

to generate data points for fitting eq. (1). 

The literature on concrete creep have suggested several aging creep laws that may be used for presmoothing. 

Bažant and Osman [21] provide a collection of some of the best-known creep formulas at the time of their 

publication. For the purpose of exemplifying some relevant concepts for the scope of this work, the double-power 

law is here introduced, being given by [21]: 

 

𝐽(𝑡, 𝑡′) =
1

𝐸0

+
𝜑1

𝐸0

𝑡′−𝑚(𝑡 − 𝑡′)𝑛 (3) 

In which t and t’ conserve the same meaning as given in eq. (1), and 𝐸0, φ1, m, and n are the four parameters 

that determine the law. This law is known to reasonably adhere to data of concrete creep at constant temperature 

and water content (the so-called basic creep) but may provide excessive final slopes when fitted to long-term tests, 

for which the double-power logarithmic law seems to be more adequate [22].  

At first inspection, one may observe that eq. (2) may present limitations to properly model the aging 

dependence of the instantaneous response of creep, since the first term 1 𝐸0⁄  is age independent and, thus, all aging 

compliances would have the same value for 𝑡 = 𝑡′ = 0. To improve this aspect, nothing prevents that a modified 

version of this law is used, by introducing an age dependency in the first term with a three-parameter model [23], 

leading to: 

 

𝐽(𝑡, 𝑡′) =
1

𝐸0 ∙ 𝑒
−(

𝜏1
𝑡

)
𝛽1

+
𝜑1

𝐸0

𝑡′−𝑚(𝑡 − 𝑡′)𝑛 (4) 

In which two additional parameters 𝜏1 and 𝛽1 are included in the formulation. The resulting equation is then 

more capable of adhering to the know decrease of initial displacements observed in creep tests and compliances 

obtained from design codes. In this way, if presmoothing is required, it is possible to modify a given existent creep 

law if it is unable to adhere to a particular feature of the data under analysis.  

3  Methodology 

The methodology followed in this work consisted in using the Python programming language to implement 

an algorithm to perform a non-linear curve fitting of eq. (1) to a set of compliance functions obtained at different 

loading ages, in order to obtain the parameters of a Generalized Kelvin Chain model. The retardation times were 

previously defined and followed the recommendations outlined and discussed in section 2.2. Then, the non-linear 

curve fitting provided the values of the modulus 𝐸𝑖 of each Kelvin unit. The fitting for each age was performed 

separately and the space of solution was bounded to (0, ∞) to prevent negative modulus values, which, although 

not mathematically incorrect, are physically implausible. The curve fitting was performed with the method 

curve_fit from the SciPy library, which performed a non-linear least square fitting using the Trust Region 

Reflective optimization algorithm, adequate for bounded problems, as is the case implemented in this work [24]. 

The aging compliance data used to test the Generalized Kelvin Chain fitting algorithm were obtained from 

an algorithm implemented to generate compliances per Eurocode 2 [6] and fib Model Code 2010 [7]. To generate 

the exemplificatory aging compliances shown in section 4 , the following inputs were used: Eurocode 2 creep 

model;  a cross-sectional area of 62500 mm2; a notional size of 1000 mm; a concrete class “C50”; a cement type 

“42.5N”; and an ambient temperature of 20ºC; relative humidity of 80%. The total creep time was 365 days. The 

loading ages and data points in each compliance curve were sampled uniformly in the logarithmic scale. 

A presmoothing feature was also implemented in the code, with the possibility to fit eqs. (3) and (4), and the 

same framework can be used to implement any other creep law. All the developed algorithms (Generalized Kelvin 

Chain model fitting, creep law presmoothing, and compliance generation according to Eurocode 2 and fib Model 

Code 2010 design codes) are open-source and available at a GitHub repository [25]. 
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4  Results and discussion  

An example of the functionalities of the developed algorithm (e.g., the non-linear curve fitting for obtaining 

the Generalized Kelvin Chain model and the presmoothing) is summarized in Figure 2. In this example, an artificial 

random noise was added to aging compliances computed from Eurocode 2 (labelled as “EC2-Xd”). The noise 

followed a normal distribution with a zero average and a 1% standard deviation dependent on the magnitude of 

each data point. The artificially noisy aging compliances were then presmoothed with Double Power Law curves 

(labelled as “DPL-Xd”) accordingly to eq. (4), which were then used to fit eq. (1) in order to obtain the full 

Generalized Kelvin Chain model curves (labelled as “KC-Xd”). A total of eight loading ages were included in the 

example. From Figure 2, one can observe that the superposition and smoothness of the Double Power Law and 

Generalized Kelvin Chain curves is guaranteed even though the original compliance curves are wavy due to the 

added random noise. The excellent superposition between the smoothed and Kelvin Chain compliance curves, 

which are even difficult to distinguish visually, indicates the developed fitting algorithm has a good performance 

and suggests it can be used to derive Generalized Kelvin Chain models from compliances computed from design 

codes or data contaminated with noises or other potential issues. This workflow emulated what could be done 

when one is working with purely experimental data, which can not only suffer from random errors but also partial 

data loss, obstacles that can be circumvented with presmoothing.  The Generalized Kelvin Chain model used was 

comprised of nine Kelvin units. This number was automatically chosen after following the recommendations given 

in section 2.2 about the selection of retardation times. 

 

 

Figure 2 Aging compliances from Eurocode 2 (EC2-Xd) with an added artificial noise, their smoothing with a 

Double Power Law given by eq. (4) (DPL-Xd), and their representation with Generalized Kelvin Chain models 

(KC-Xd), in which X represents the age of loading (X=3.0, 4.9, 7.9, …, 90.0 days). 

Figure 3 shows the discrete retardation spectrum associated to the Generalized Kelvin Chain model shown 

in shown in Figure 2. The retardation times presented in the spectrum were automatically defined after following 

the recommendations outlined in section 2.2, and so the smallest retardation time, 𝜏1, is equal to 10−9 days, and 

the highest is equal to 300 days, which was the smallest value in a equidistant logarithmic sampling starting at the 

second smallest retardation time, 𝜏2, defined as 3 × 10−5 days based on the first time instant defined in the 

compliance function, to be equal or higher than half of the maximum creep time of interest, which was 365 days. 

The physical interpretation Figure 3 requires recalling that, in eq. (1), the modulus is a denominator in the series, 

and so the higher its value, the less contribution the associated Kelvin unit provides to the overall compliance. 

Figure 3 indicates that higher retardation times, associated to slower creep mechanisms, contribute more to the 
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compliance function that smaller retardation times, associated to quick creep mechanism. Indeed, concrete is 

known to present a viscoelastic phenomenon that evolves significantly along time, with a retardation spectrum 

whose higher contributions are within scales of 100 to 103 days [20]. Also, as aging progresses, it is observed a 

consistent increase in the modulus of all chains, indicating an overall smaller compliance as expected and observed 

in Figure 2.  

 

Figure 3 Discrete retardation spectrum associated to the aging Generalized Kelvin Chain model. 

5  Conclusion 

The algorithm developed in this work was shown to be capable of providing a Generalized Kelvin Chain 

model from aging compliances curves obtained from models given by Eurocode 2 [6] and fib Model Code 2010 

[7]. The use of presmoothing was exemplified by deriving a Generalized Kelvin Chain model from a set of 

compliances in which noise was artificially added. While this strategy of curve fitting is known to be generally ill-

posed, if recommendations found on the literature of concrete creep are followed, as the ones outlined in section 

2.2, the fitting procedure was successful. The algorithm is completely open-source and available at [25]. 
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