Controle Preditivo Baseado em Modelo para Fontes Ininterruptas de Energia: Estabilidade e Desempenho

Robert U. M. Viaro

Grupo de Eletrônica de Potência e Controle Universidade Federal de Santa Maria Santa Maria, Brasil Everson Mattos

Grupo de Eletrônica de Potência e Controle Universidade Federal de Santa Maria Santa Maria, Brasil

Vinicius F. Montagner Grupo de Eletrônica de Potência e Controle Universidade Federal de Santa Maria Santa Maria, Brasil

Abstract-Este artigo traz como contribuição um controlador preditivo baseado em modelo aplicado ao rastreamento de referências senoidais para uso em inversores empregados em fontes ininterruptas de energia. A estratégia proposta considera o atraso na implementação digital do sinal de controle e os limites de amplitude deste sinal em inversores. A função custo utilizada é dada por uma soma do erro de rastreamento ao quadrado e do sinal de controle ao quadrado, com horizonte de predição igual a dois e com apenas um fator de ponderação, γ , empregado para a sintonia do controlador. Um estudo de caso, baseado em parâmetros da literatura para uma fonte ininterrupta de energia, mostra como γ pode ser escolhido, utilizando como base os valores médios quadráticos do erro de rastreamento e do sinal de controle, em um ensaio de rastreamento de referência senoidal. Uma análise de baseada nos polos em função de γ demonstra a estabilidade do sistema em malha fechada e também limites de desempenho. Resultados de simulação ilustram a eficácia do controle proposto.

Index Terms—Fontes ininterruptas de energia, Controle preditivo baseado em modelo, Estabilidade, Desempenho

I. INTRODUÇÃO

Um problema importante em fontes ininterruptas de energia (do inglês, Uninterruptible Power Supplies – UPS) é o controle da tensão de saída, a ser aplicada para alimentar a carga. Esta tensão deve ser sinusoidal, com baixa distorção harmônica, e rápida recuperação em transitórios. Portanto, o sistema de controle desta tensão deve ser capaz de seguir uma referência senoidal ao longo do tempo, com erro nulo em regime permanente. Outro ponto importante é a duração da carga das baterias que alimentam sistemas UPS, duração esta que pode ser aumentada por meio de um controle que minimize ou reduza a energia demandada da fonte primária. Uma das formas de abordar o problema é o projetista do controle tentar encontrar uma boa relação de compromisso entre a minimização da energia do erro de tensão e da energia demandada pelo sinal de controle (que impacta na duração da carga das baterias). Por exemplo, pode-se obter erros de rastreamento de tensão menores ao custo de um sinal de controle com maior energia, ou pode-se reduzir a energia do sinal de controle, relaxando a minimização do erro da tensão de saída [1]-[4].

Algumas técnicas de controle, como o regulador linear quadrático (do inglês, *Linear Quadratic Regulator* – LQR), permitem ao projetista escolher pesos em uma função custo que contém uma medida da energia dos estados e uma medida da energia do sinal de controle. Portanto, escolhendo adequadamente as matrizes de ponderação em um LQR, pode-se chegar em um bom compromisso entre rastreamento de referência e energia do sinal de controle. Entretanto, o problema das escolhas dos pesos da função custo de um LQR não é trivial, envolvendo simultaneamente a escolha de vários pesos, o que pode ser custoso ao projetista, demandando, por exemplo, uma etapa de tentativa e erro ou de busca exaustiva dos pesos. Além disso, para implementação digital do controlador em conversores de potência, em geral utiliza-se a solução de horizonte infinito de um LQR discreto, que leva a um ganho fixo de realimentação de estados, que é calculável off-line. Então, embora a lei de controle de um LQR discreto seja de simples implementação (ganhos calculados off-line e fixos, sem nenhuma necessidade de atualização online destes ganhos), frequentemente tem-se um desempenho dinâmico conservador para aplicações em sistemas UPS [5]-[8].

Mais recentemente, vem-se observando em Eletrônica de Potência um uso crescente de controle preditivo baseado em modelo (do inglês, Model Predictive Control – MPC), inclusive para aplicações em UPS. Estes controladores são conhecidos por fornecerem transitórios muito rápidos e regime permanente com baixos erros, além de agregar robustez contra incertezas paramétricas e distúrbios. Controladores MPC são fáceis de implementar, são ótimos no sentido de minimizar uma função custo que mede a qualidade da resposta do sistema, em um horizonte de predição escolhido pelo projetista. A função custo de um MPC pode utilizar termos com o erro de rastreamento da referência e o sinal de controle, por exemplo. No caso de MPCs de conjuntos de controle contínuo (do inglês, Continuous Control Set – CCS), ou seja, MPC-CCS, a solução do problema de otimização pode ser feita offline, e o projetista pode testar, antes de implementar o controle no conversor físico, várias ponderações entre a importância do erro de rastreamento e a importância do sinal de controle [9]–[12]. Entretanto, em muitos casos de MPCs, um número maior de parâmetros na função custo dificulta a sintonia.

Este artigo tem objetivo de contribuir com um controle MPC-CCS para a tensão de UPSs monofásicas, com inversor de ponte completa e filtro LC de saída. O controle MPC proposto utiliza uma função custo dada por uma soma ponderada do erro de rastreamento ao quadrado duas amostras à frente e do sinal de controle ao quadrado. Primeiramente, mostra-se que é necessário apenas um parâmetro de ponderação nesta função custo, o peso γ . Este único parâmetro de projeto é um escalar positivo que significa quantas vezes o sinal de controle é mais importante na otimização do que o erro de rastreamento. Valores de $\gamma < 1$ indicam que minimizar o erro é mais importante que minimizar a energia do sinal de controle. Valores de $\gamma > 1$ indicam que a prioridade passa a ser minimizar a energia do controle. Desta forma, fica mais simples para o projetista encontrar um valor de γ que permita uma boa relação de compromisso entre rastreamento de referência (i.e. minimização do erro) e economia da energia do atuador (i.e. minimização do sinal de controle). São utilizados parâmetros físicos, consultados na literatura, para caracterizar a dinâmica de uma UPS e ilustrar as análises de desempenho e estabilidade. Estas análises indicam como o sinal de erro e o sinal de controle, e também como os polos de malha fechada, evoluem para vários valores diferentes de γ , auxiliando o projetista na sintonia do MPC. Os resultados de simulação ilustram tensões de saída viáveis para implementação em UPSs.

Os resultados ilustram tensões de saída viáveis para implementação em UPSs.

II. MODELO DE PREDIÇÃO DO ERRO

Considere o estágio de saída de uma UPS monofásica, mostrado na Figura 1. O objetivo aqui será controlar a tensão de saída (tensão sobre a carga R_L), para que esta seja senoidal, com poucas distorções, a partir das medidas da corrente no indutor L_f e da tensão no capacitor C_f , utilizando uma lei de controle digital para gerar o sinal de tensão de saída do inversor u_{PWM} .

Figure 1. Estágio de saída de uma UPS monofásica.

Substituindo a fonte E e o inversor por uma fonte de tensão u que equivale à média do sinal modulado em largura de pulso pelo inversor e utilizando as leis de Kirchhoff, tem-se o seguinte modelo da planta

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

$$y = \mathbf{C}\mathbf{x}$$
(1)

Neste modelo, as matrizes \mathbf{A} , \mathbf{B} , \mathbf{C} , o vetor de estados \mathbf{x} e a saída y são dados por

$$\mathbf{A}_{c} = \begin{bmatrix} -\frac{1}{R_{L}C_{f}} & -\frac{1}{C_{f}} \\ \frac{1}{L_{f}} & 0 \end{bmatrix}, \quad \mathbf{B}_{c} = \begin{bmatrix} 0 \\ \frac{E}{L_{f}} \end{bmatrix}, \quad (2)$$
$$\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} v & i \end{bmatrix}^{T}, \quad y = v$$

Discretizando o modelo (1) com um período de amostragem T_s , utilizando um segurador de ordem zero, e inserindo um atraso de um período de amostragem na implementação do sinal de controle, tem-se o modelo

$$\mathbf{x}(k+1) = \mathbf{A}_d \mathbf{x}(k) + \mathbf{B}_d u(k-1) ,$$

$$y(k) = \mathbf{C}_d \mathbf{x}(k)$$
(3)

em que $\mathbf{A}_d = e^{\mathbf{A}T_s}, \ \mathbf{B}_d = \int_0^{T_s} e^{\mathbf{A}\tau} \mathbf{B} d\tau \ \mathbf{C}_d = \mathbf{C}.$

O erro de rastreamento da referência senoidal, denotada por R(k), é dado por

$$e(k) = R(k) - \mathbf{C}_d \mathbf{x}(k) \tag{4}$$

Utilizando o modelo (3), a predição do erro uma amostra à frente é dada por

$$e(k+1) = R(k+1) - \mathbf{C}_d \mathbf{A}_d \mathbf{x}(k) - \mathbf{C}_d \mathbf{B}_d u(k-1)$$
(5)

e a predição do erro duas amostras à frente é dada por

$$e(k+2) = R(k+2) - \mathbf{C}_d \mathbf{A}_d^2 \mathbf{x}(k) - \mathbf{C}_d \mathbf{A}_d \mathbf{B}_d u(k-1) - \mathbf{C}_d \mathbf{B}_d u(k)$$
(6)

Um dos objetivos do controle MPC, descrito na próxima seção, será encontrar o sinal de controle que minimize um custo quadrático sobre o erro como em (6), e permitindo reduzir também a energia do sinal de controle.

Para os estudos numéricos no decorrer do artigo, serão utilizados os parâmetros da Tabela I, provenientes de [6], adaptados aqui para potência nominal de 500 W.

Table	Ι	
Parâmetros	DA	UPS.

Parâmetros	Valores
Tensão do barramento CC	240 V
Tensão de pico sobre a carga	120 V
Potência nominal de saída	500 W
Frequência de amostragem e comutação	20 kHz
Frequência da referência senoidal	60 Hz
Capacitância do filtro	$100 \ \mu F$
Indutância do filtro	$333 \ \mu H$
Resistência de carga nominal	$14,4 \Omega$

III. MPC com apenas um parâmetro de sintonia

Para o MPC, é necessário um modelo de predição da saída, dado na seção anterior, uma função custo, que caracteriza o desempenho do sistema, e uma otimização, para encontrar o sinal de controle ótimo a cada instante.

Para a função custo, considere primeiramente

$$J_1 = \gamma_1 e(k+2)^2 + \gamma_2 u(k)^2 \tag{7}$$

que é dada por uma soma ponderada da predição do erro duas amostras à frente, elevado ao quadrado, e do sinal de controle elevado ao quadrado.

Dividindo toda a expressão anterior por γ_1 , tem-se

$$\frac{J_1}{\gamma_1} = e(k+2)^2 + \frac{\gamma_2}{\gamma_1} u(k)^2 \tag{8}$$

Esta expressão da função custo é equivalente à expressão (6), e pode ser reescrita como

$$J = e(k+2)^2 + \gamma u(k)^2$$
 (9)

sendo que (9) será utilizada como função custo neste trabalho. Observe que (9) utiliza apenas um parâmetro de projeto, γ , que é a razão entre γ_2 e γ_1 , tornando mais simples a sintonia deste MPC.

Observe que nesta função custo, se γ for escolhido como 0, a função custo leva em conta somente o erro quadrático, sem limitar a ação de controle. Quanto mais elevado for o valor de γ , maior será a penalização do sinal de controle na função custo, levando a ações que priorizam a redução do sinal de controle, em detrimento da redução do erro.

Substituindo (6) em (9), e resolvendo o problema de otimização irrestrita em relação a u(k), tem-se que o sinal de controle do MPC proposto que minimiza a função custo é dado por

$$u(k) = \frac{\left(R(k+2) - \mathbf{C}_d \mathbf{A}_d^2 \mathbf{x}(k) - \mathbf{C}_d \mathbf{A}_d \mathbf{B}_d u(k-1)\right) (\mathbf{C}_d \mathbf{B}_d)}{(\mathbf{C}_d \mathbf{B}_d)^2 + \gamma}$$
(10)

A expressão acima pode ser reescrita como

$$u(k) = N_r R(k+2) - \mathbf{N}_{\mathbf{x}} \mathbf{x}(k) - N_u u(k-1)$$

$$N_r = \frac{\mathbf{C}_d \mathbf{B}_d}{(\mathbf{C}_d \mathbf{B}_d)^2 + \gamma}, \quad \mathbf{N}_{\mathbf{x}} = \frac{(\mathbf{C}_d \mathbf{A}_d^2)(\mathbf{C}_d \mathbf{B}_d)}{(\mathbf{C}_d \mathbf{B}_d)^2 + \gamma} \qquad (11)$$

$$N_u = \frac{(\mathbf{C}_d \mathbf{A}_d \mathbf{B}_d)(\mathbf{C}_d \mathbf{B}_d)}{(\mathbf{C}_d \mathbf{B}_d)^2 + \gamma}$$

em que a lei de controle é vista como uma combinação de uma ação antecipatória da referência, uma realimentação dos estados e uma realimentação do controle atrasado.

A. Análise de estabilidade

Para análise de estabilidade com o MPC proposto, será obtida nesta seção a função de transferência da referência para a saída e, após, será feita a análise da posição dos polos de malha fechada em função do parâmetro γ de sintonia da função custo.

Aplicando a transformada \mathcal{Z} no sistema (3) com condições iniciais nulas, tem-se

$$z\mathbf{X}(z) = \mathbf{A}_d\mathbf{X}(z) + z^{-1}\mathbf{B}_dU(z)$$
(12)

Da mesma forma, aplicando a transformada \mathcal{Z} na equação do sinal de controle (12), tem-se

$$U(z) = z^2 N_r R(z) - \mathbf{N}_{\mathbf{x}} \mathbf{X}(z) - z^{-1} N_u U(z)$$
(13)

Isolando a expressão de U(z), tem-se

$$U(z) = \frac{z}{(z+N_u)} z^2 N_r R(z) - \frac{z}{(z+N_u)} \mathbf{N_x} \mathbf{X}(z) \quad (14)$$

Substituindo (14) em (12), pode-se escrever

$$z\mathbf{X}(z) = \mathbf{A}_d \mathbf{X}(z) + z^{-1} \mathbf{B}_d \left(\frac{z}{(z+N_u)} z^2 N_r R(z) - \frac{z}{(z+N_u)} \mathbf{N}_{\mathbf{x}} \mathbf{X}(z)\right)$$
(15)

Manipulando a expressão acima, obtém-se

$$\mathbf{X}(z) = \left((z + N_u)(z\mathbf{I} - \mathbf{A}_d) + \mathbf{B}_d \mathbf{N}_{\mathbf{x}} \right)^{-1} \mathbf{B}_d z^2 N_r R(z) \quad (16)$$

Finalmente, escrevendo a saída Y(z) em função da referência R(z), tem-se a expressão da função de transferência de malha fechada com o MPC proposto:

$$Y(z) = \mathbf{C}_d \mathbf{X}(z)$$

$$Y(z) = \mathbf{C}_d \left((z + N_u)(z\mathbf{I} - \mathbf{A}_d) + \mathbf{B}_d \mathbf{N}_x \right)^{-1} \mathbf{B}_d z^2 N_r R(z)$$
(17)

IV. Resultados: desempenho e estabilidade

Esta seção mostra a influência da escolha do parâmetro γ da função custo no desempenho do controle da tensão da UPS e na estabilidade do sistema de controle em malha fechada com o MPC proposto.

Para todos os ensaios a seguir, foram utilizados os parâmetros da UPS na Tabela I, e foi utilizada uma referência de tensão de 120 V de pico, 60 Hz, que inicia com fase 0 graus, e, após um período e meio da senoide, a fase foi invertida em 180 graus, para ter um transitório desafiador para o rastreamento desta forma de onda.

Todas as figuras na sequência têm as variáveis de saída, referência e erro expressos em Volts.

Primeiramente, foi escolhido o valor de $\gamma = 0, 1$. Os resultados são mostrados na Figura 2, indicando um bom rastreamento, com transitório rápido na variação da referência, mas com o sinal de controle de alto custo e inviável devido à alta frequência na partida e na variação de fase da referência.

Na sequência, em um processo iterativo, foi-se aumentando o valor de γ em potências de 10, para analisar diversas situações de sinal de erro de rastreamento e do sinal de controle em função do parâmetro de projeto.

Na Figura 3, tem-se os resultados para $\gamma = 1$, que significa que o peso do erro e do sinal de controle, na função custo, são os mesmos. Novamente, nota-se um bom rastreamento da referência na partida e na variação da referência, um sinal de erro pequeno nos transitórios e desprezível em regime permanente, mas ainda um sinal de controle com componentes de alta frequência, de difícil implementação prática por um inversor PWM. Entretanto, pode-se observar que o sinal de controle nesta simulação

Figure 2. Resultados para $\gamma = 0, 1$ para um período de amostragem 5 μ s. Tensão de saída e respectiva referência (superior). Erro de rastreamento (intermediário). Razão cíclica (inferior).

tem menor energia do que o da simulação anterior, indicando a importância de usar também o termo $u(k)^2$, juntamente com $e(k+2)^2$ na função custo.

Figure 3. Resultados para $\gamma = 1$ para um período de amostragem 5 μ s. Tensão de saída e respectiva referência (superior). Erro de rastreamento (intermediário). Razão cíclica (inferior).

Na Figura 4, tem-se os resultados para $\gamma = 10$, que significa que o peso do sinal de controle torna-se 10 vezes maior do que o sinal de erro. O rastreamento da referência continua bom, e o sinal de controle tem reduzidas componentes de alta frequência, facilitando sua implementação prática. Nota-se apenas a presença de componentes de alta frequência na partida do sinal de controle.

Continuando o aumento de γ em potências de 10, na Figura 5 são mostrados os resultados para $\gamma = 100$. Novamente, é possível notar bom desempenho em termos baixo erro de rastreamento, principalmente no transitório de variação de fase da referência, e um sinal de controle mais suave do que os anteriores, indicando que este valor de γ fornece uma boa relação de compromisso entre rastreamento de referência e energia do sinal de controle.

Finalmente, com o valor de $\gamma = 1000$, nota-se, na Figura 6, que o rastreamento da referência piora, devido à restrição da energia do sinal de controle, pois esta escolha de γ indica uma importância do sinal de controle 1000 vezes maior que a do sinal de erro na função custo. Desta

Figure 4. Resultados para $\gamma = 10$ para um período de amostragem 5 μ s. Tensão de saída e respectiva referência (superior). Erro de rastreamento (intermediário). Razão cíclica (Resultados par00a $\gamma = 1$ para um período de amostragem 5 μ s. Tensão de saída e respectiva referência (superior). Erro de rastreamento (intermediário). Razão cíclica (inferior).

Figure 5. Resultados para $\gamma = 100$ para um período de amostragem 5 μ s. Tensão de saída e respectiva referência (superior). Erro de rastreamento (intermediário). Razão cíclica (inferior).

forma, a otimização prioriza a redução da energia do sinal de controle, em detrimento do erro de rastreamento.

Figure 6. Resultados para $\gamma = 1000$ para um período de amostragem 5 μ s. Tensão de saída e respectiva referência (superior). Erro de rastreamento (intermediário). Razão cíclica (inferior).

A Figura 7 consolida os resultados de simulação similares aos anteriores, de $\gamma = 0$ até $\gamma = 1000$, aumentando 10 unidades entre cada simulação. Pode-se observar a grande variação do desempenho, em função do valor de γ , para o de sinal de controle, e uma variação menor no desempenho, mas ainda perceptível, para o erro de rastreamento. Esta figura indica ao projetista que existem escolhas de γ que permitem uma melhor relação de compromisso entre erro de rastreamento e sinal de controle. Uma boa escolha neste cenário significa buscar um valor de γ que garanta baixo erro de rastreamento e não tenha sinal de controle proibitivo para implementação.

Figure 7. Resultados para $\gamma = [0, 10, 20, \dots, 1000]$ para um período de amostragem 5 μ s. Tensões de saída e referência (superior). Erros de rastreamento (intermediário). Razões cíclicas (inferior).

Para um estudo mais sistemático do erro de rastreamento e do sinal de controle para toda a faixa de $\gamma = 0$ até $\gamma = 1000$, para cada simulação mostrada na figura anterior, foram calculadas as raízes quadradas das médias quadráticas (do inglês, *Root Mean Square* – RMS) do erro de rastreamento e do sinal de controle. Estes valores RMS podem ser vistos como medida da energia dos sinais.

Para o cálculo destes valores RMS do erro e do sinal de controle, foi escolhida a janela que vai da amostra k = 400 até a amostra k = 600, por conter o transitório mais rigoroso de variação de referência e o início do regime permanente consecutivo, sendo interessante para verificar a energia destes sinais. Portanto, os valores RMS do erro e do sinal de controle foram calculados como

 $e_{RMS} = \sqrt{\frac{1}{201}} \sum_{k=400}^{600} (r(k) - y(k))^2$ (18)

е

$$u_{RMS} = \sqrt{\frac{1}{201} \sum_{k=400}^{600} u(k)^2}$$
(19)

Os resultados dos valores RMS do erro e do sinal de controle, em função de γ , são mostrados na Figura 8.

Uma análise da Figura 8 indica que a faixa de γ entre 0 e 10 não é indicada para a escolha de γ , devido aos maiores valores RMS do sinal de controle, associados às componentes de alta frequência verificadas nas simulações anteriores. A faixa de γ entre 10 e 100 é a mais favorável para a escolha de γ , porque garante os menores valores RMS de erro, com valores RMS relativamente baixos do sinal de controle. A faixa de $\gamma = 100$ até $\gamma = 300$ é

Figure 8. Valores RMS do erro de rastreamento (superior) e valores RMS da razão cíclica (inferior), para $\gamma = [0, 10, 20, \dots, 1000]$.

desfavorável porque escolhas de γ nesta faixa produzem valores RMS de erro maiores e valores RMS crescentes do sinal de controle. A faixa de γ entre 300 e 1000 também é desfavorável para escolhas de γ , devido ao aumento sucessivo dos valores RMS do erro, o que indica perda da qualidade do rastreamento da referência da tensão, que é requisito fundamental na operação da UPS.

Outra análise importante, que pode ser feita com base na Seção III.A, é a verificação da posição dos polos de malha fechada em função de γ . Neste sentido, a Figura 9 mostra os polos de malha fechada para 4 faixas de γ .

Figure 9. Polos de malha fechada para 4 faixas de valores de $\gamma,$ cobrindo o intervalo de $\gamma=0$ até $\gamma=1000.$

Portanto, seguindo a análise da Figura 8 e da Figura 9, a melhor faixa para a escolha de γ para este conjunto de dados da planta é de γ entre 10 e 100. Foi então escolhido especificamente o valor $\gamma = 50$ como parâmetro de projeto, por garantir bons valores RMS para o erro e para o sinal de controle e polos com maior amortecimento.

Os resultados para $\gamma = 50$ são dados na Figura 10, confirmando pequeno erro nos transitórios e em regime

permanente, e sinal de controle sem componentes de alta frequência, implementável modulado em largura de pulso (do inglês, *Pulse-Width Modulated* – PWM).

Figure 10. Resultados para $\gamma = 50$. Tensão de saída e respectiva referência (superior). Erro de rastreamento (intermediário). Razão cíclica (inferior).

A Figura 11 mostra a tensão de saída e a referência, o erro de rastreamento, e o sinal modulante da razão cíclica, que é comparado com uma portadora triangular e gera os sinais de comando para os interruptores do inversor, gerando a tensão na forma PWM na saída do inversor. Esta tensão é filtrada pelo filtro LC e chega à carga aproximadamente senoidal, com baixas ondulações, totalizando apenas 0,8 V pico a pico.

Figure 11. Resultados para $\gamma = 50$, com o sinal de controle PWM. Tensão de saída e respectiva referência (superior), com detalhamento mostrando ondulações devido ao sinal de controle PWM. Erro de rastreamento (intermediário). Razão cíclica (inferior).

A comparação entre a Figura 10 e a Figura 11 mostra a correspondência muito boa entre as formas de onda, tanto nos transitórios de partida e de variação de referência, como em regime permanente, dando mais um indicativo da viabilidade prática da abordagem MPC proposta.

V. Conclusão

Este artigo propôs um MPC aplicado ao controle da tensão de saída de UPSs monofásicas. A função custo utilizada o erro quadrático de rastreamento da referência senoidal de tensão, duas amostras à frente, e o sinal de controle quadrático, e apenas um peso, γ a ser escolhido pelo projetista. Os resultados no artigo mostram que,

para o conjunto de dados da UPS investigado, um bom compromisso entre valor RMS do erro e valor RMS é obtido para $10 \le \gamma \le 100$. As figuras de mérito no artigo auxiliam o projetista a sintonizar o MPC proposto com base na estabilidade e no desempenho. Uma validação com o sinal de controle na forma PWM confirma a viabilidade da técnica proposta. Perspectivas de trabalhos futuros incluem testes com cargas não lineares e estudos do impacto de outros horizontes de predição nos resultados.

Agradecimentos

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento e Pessoal de Nível Superior -Brasil (CAPES/PROEX) - Código de Financiamento 001, e com apoio do Conselho Nacional de Desenvolvimento Científico e Tecnológico, Processo CNPq 303992/2022-0.

References

- S. B. Bekiarov and A. Emadi, "Uninterruptible power supplies: classification, operation, dynamics, and control," in *Applied Power Electronics Conference and Exposition*, 2002. APEC 2002. Seventeenth Annual IEEE, vol. 1. IEEE, 2002, pp. 597– 604.
- [2] W. Solter, "A new international ups classification by IEC 62040-3," in 24th Annual International Telecommunications Energy Conference, 2002, pp. 541–545.
- [3] H. Deng, R. Oruganti, and D. Srinivasan, "Modeling and control of single-phase UPS inverters: A survey," in 2005 International Conference on Power Electronics and Drives Systems, vol. 2, 2005, pp. 848–853.
- [4] J. Gurrero, L. G. De Vicuna, and J. Uceda, "Uninterruptible power supply systems provide protection," *IEEE Industrial Electronics Magazine*, vol. 1, no. 1, pp. 28–38, 2007.
- [5] C. Olalla, R. Leyva, A. El Aroudi, and I. Queinnec, "Robust LQR control for PWM converters: An LMI approach," *IEEE Transactions on Industrial Electronics*, vol. 56, no. 7, pp. 2548–2558, July 2009.
- [6] L. Borin, C. Osorio, G. Koch, M. Nascimento, F. Bottega, and V. Montagner, "Particle swarm optimization for robust control tuning applied to uninterruptible power supplies," in 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America). IEEE, 2019, pp. 1–6.
- [7] R. Bimarta and K.-H. Kim, "A robust frequency-adaptive current control of a grid-connected inverter based on LMI-LQR under polytopic uncertainties," *IEEE Access*, vol. 8, pp. 28756– 28773, 2020.
- [8] H. Jank, W. A. Venturini, M. L. S. Martins, H. Pinheiro, and F. E. Bisogno, "Distributed hierarchical control with separation of concerns for parallel-connected UPSs," *IEEE Transactions on Power Electronics*, vol. 37, no. 1, pp. 234–248, 2022.
- [9] F. Wang, S. Li, X. Mei, W. Xie, J. Rodríguez, and R. M. Kennel, "Model-based predictive direct control strategies for electrical drives: An experimental evaluation of ptc and pcc methods," *IEEE Transactions on Industrial Informatics*, vol. 11, no. 3, pp. 671–681, 2015.
- [10] B. Stellato, T. Geyer, and P. J. Goulart, "High-speed finite control set model predictive control for power electronics," *IEEE Transactions on Power Electronics*, vol. 32, no. 5, pp. 4007–4020, 2017.
- [11] A. A. Ahmed, B. K. Koh, and Y. I. Lee, "A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors," *IEEE Transactions on Industrial Informatics*, vol. 14, no. 4, pp. 1334– 1346, 2018.
- [12] X. Zhang, L. Zhang, and Y. Zhang, "Model predictive current control for pmsm drives with parameter robustness improvement," *IEEE Transactions on Power Electronics*, vol. 34, no. 2, pp. 1645–1657, 2019.