

**PHARMACOLOGICAL ASSESSMENT OF SELENIUM COMPOUNDS AGAINST
MERCURY CHLORIDE INDUCED CYTOTOXICITY IN PERIPHERAL BLOOD
MONONUCLEAR CELLS**

Clarisse Guerra Martins; Alessandro de Souza Prestes; Joao Batista Teixeira da Rocha;
Universidade Federal de Santa Maria, Santa Maria - RS

ABSTRACT

INTRODUCTION: Mercury chloride ($HgCl_2$) is a severely toxic inorganic form of Hg, and a foremost pollutant that poses significant threats to biodiversity and public health. Upon exposure in humans, mercury chloride ($HgCl_2$) exerts stress on the immune system and compromises mononuclear cells. **OBJECTIVE:** The objective of this study is to investigate and differentiate toxicological mechanisms of $HgCl_2$, its effects on human peripheral blood mononuclear cells (PBMCs) as well as to assess the pharmacological potential of organoselenium compounds such as ebselen (Ebs) and diphenyl diselenide ($PhSe_2$) against $HgCl_2$ -induced cytotoxicity. Ultimately, the goal is to determine in which ways the treatments' effects on PBMCs are mediated by mitochondrial dysfunction. **MATERIAL AND METHODS:** Peripheral blood was collected from healthy volunteers following protocol for isolating PBMCs. Approximately 4×10^6 cells/mL were isolated per group and exposed to $2.5\mu M$ ($PhSe_2$) or ebselen, dissolved in 0.5% DMSO, and/or $5\mu M$ $HgCl_2$ in distilled water. The cells were cultured in RPMI medium supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic at $37^\circ C$ in 5% CO_2 . After 3 hours of exposure, oxygen consumption rate was measured using High Resolution Respirometry (HRR), with titrations of 10mM Succinate, $2.5\mu M$ Oligomycin, 1-4 μM FCCP, $0.5\mu M$ Rotenone and $2.5\mu M$ Antimycin. Once the HRR protocol was complete, basal electron flux values (Routine), oxidative phosphorylation (OXPHOS), maximum mitochondrial respiratory capacity (LEAK) and electron transport system (ETS CI/CII) were calculated and submitted to statistical analysis using one-way ANOVA followed by Tukey's post-hoc test. Differences were considered statistically significant for $p \leq 0.05$. **RESULTS AND CONCLUSION:** HRR assays indicate that the combination of $2.5\mu M$ ($PhSe_2$) and $5\mu M$ $HgCl_2$ significantly reduced oxygen flux in Routine, LEAK, and ETS CI-linked states, while $5\mu M$ $HgCl_2$ alone decreased OXPHOS compared to Control. Similarly, $2.5\mu M$ Ebs and $5\mu M$ $HgCl_2$ inhibited OXPHOS, LEAK, and ETS CI-linked states. However, $2.5\mu M$ ($PhSe_2$) and $2.5\mu M$ Ebs alone did not alter

mitochondrial parameters relative to Control. Further tests are required to determine other protective effects against mercury chloride-induced mitochondrial dysfunction.

Keywords: HgCl₂, Selenium, PBMCs.