

COMPARATIVE ANALYSIS OF THE CYTOTOXIC AND/OR ANTIOXIDANT ACTIVITY OF GREEN-SYNTHESIZED CeO_2 NANOPARTICLES AND CeO_2 NANOBIOHYBRIDS WITH ROSEMARY ON HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS

Valentina Collo Salazar¹, Luisa María Rendón Barros¹, Victoria Niño Castaño¹, Rosa Dueñas Cuellar¹, Sofía Freyre Bernal¹, Jazmín Calvache Muñoz¹, Jorge Rodríguez Páez¹. 1 University of Cauca.

valentiinacs@unicauc.edu.co, luisarendon@unicauc.edu.co

INTRODUCTION: Cerium oxide nanoparticles (CeO_2 NPs), due to their $\text{Ce}^{+3}/\text{Ce}^{+4}$ oxidation states, have a remarkable ability to accept and release oxygen ions, thanks to their crystal lattice structure and the presence of oxygen vacancies. It is reported that they have antioxidant activity however they can cause cytotoxic effects depending on their physicochemical characteristics. CeO_2 NPs, were green synthesized without (CeO_2 NPsgm) and with *Salvia rosmarinus* (RO) by the Ceramic Materials Science and Technology (CYTEMAC) research group, showed antimicrobial effects on *E. coli*. Therefore, the aim was to evaluate their potential cytotoxic and or antioxidant effects. **OBJECTIVES:** To evaluate the cytotoxic and/or antioxidant activity of CeO_2 NPsgm and CeO_2 NPsgm with RO on human peripheral blood mononuclear cells (PBMCs). **MATERIALS AND METHODS:** An in vitro experimental study was conducted using PBMCs cultures from three healthy male donors. Three independent experiments, each performed in triplicate, were carried out, the cells were exposed for 24 hours to various concentrations of CeO_2 NPsgm and CeO_2 NPsgm with RO. Cell viability was assessed using resazurin with CeO_2 NPs concentrations ranging from 2 to 500 $\mu\text{g}/\text{mL}$, and apoptosis/necrosis induction was analyzed by flow cytometry using Annexin V/7AAD at concentrations from 3.9 to 250 $\mu\text{g}/\text{mL}$. Antioxidant capacity was analyzed using DCFDA at concentrations of 3.9 to 250 $\mu\text{g}/\text{mL}$ in the presence of H_2O_2 . A cellular uptake analysis was performed to assess the interaction of CeO_2 NPs with PBMCs. **RESULTS:** No significant differences in cell viability were observed compared to the negative control, although atypical increases in viability of up to 122% and 141% were observed for CeO_2 NPsgm and CeO_2 NPsgm with RO, respectively, at 500 $\mu\text{g}/\text{mL}$, possibly due to their agglomeration and sedimentation. No statistical differences were found in apoptosis induction or ROS inhibition for both CeO_2 NPs compared to the control. Additionally, dose dependent cellular uptake of CeO_2 NPs by PBMCs was evident. **CONCLUSIONS:** CeO_2 NPsgm and CeO_2 NPsgm with RO, evaluated at concentrations from 2 to 500 $\mu\text{g}/\text{mL}$, do not induce significant cytotoxic effects, nor do they exhibit antioxidant activity at concentrations from 3.9 to 250 $\mu\text{g}/\text{mL}$ on PBMCs exposed to an oxidizing agent.

Keywords: cerium oxide nanoparticles; cytotoxicity; antioxidant activity.

Funding source: University of Cauca