

ECOTOXICITY OF BEAUTY PROJECT: USE OF SOCIAL MEDIA AS A PURPOSE OF UNIVERSITY EXTENSION

Bianca Gonzaga Arantes¹; Julia Kamchen²; Jessica De Almeida Barradas²; Lívia Pereira De Alencar²; Ana Beatriz Gonzaga Arantes Souza³; Daniele Caetano Da Silva² Jeamylle Nilin¹.

¹Federal University of Uberlândia- Institute of Biology (INBIO)-Uberlândia-MG.

² Federal University of Mato Grosso- Engenharia College - Cuiabá, MT.

³ESAMC college- Advertising and Publicity major -Uberlandia-MG.

INTRODUCTION: Cosmetics and personal hygiene products contain substances that are not removed by conventional wastewater treatment and can pollute aquatic ecosystems, causing negative effects on biota. During the COVID-19 pandemic, university outreach faced challenges due to social distancing. As a result, the use of social media increased for communication and knowledge dissemination, helping maintain academic and social initiatives.

OBJECTIVE: This project aimed to share information about substances found in cosmetics, focusing on their ecotoxicological potential. Social media was used to raise awareness among users about environmental impacts, encouraging reflection on conscious consumption and the roles of consumers and industries in environmental pollution.

MATERIALS AND METHODS: Science communication materials (created using Canva and Capcut) were published on LEATOX's social media platforms (Instagram, Facebook, and YouTube) between June 2021 and January 2022. Nine cosmetic substances with ecotoxicological relevance were addressed: Triclosan, Parabens, Microplastics, Nanoparticles, Oxybenzone, Fragrances, Phthalates, Sodium lauryl sulfate, and Cocamide DEA. Weekly posts and monthly videos presented scientific information on their chemical and ecotoxicological characteristics. Engagement was evaluated based on user interactions from publication through January 2025, and average engagement was used as an indicator of reach.

RESULTS AND CONCLUSION: A total of 45 regular posts were shared on Instagram and Facebook, along with eight reels and nine YouTube videos. Instagram had the highest public reach, while Facebook had the lowest. On Instagram, reels achieved higher engagement—averaging 42 likes and 7 comments—compared to regular posts, which averaged 39 likes and 4 comments. This suggests a preference for audiovisual content. On YouTube, videos averaged 79 views and 17 likes. The integration of Instagram and YouTube helped expand the audience, as YouTube videos were promoted through Instagram. This cross-platform strategy proved effective in enhancing the project's visibility and impact. Overall, social media demonstrated strong potential as a tool for science communication, helping raise awareness and promote critical thinking about the environmental impacts of commonly used products.

Key-words: Cosmetics, Emerging contaminants, Environmental pollution.

Funding: CAPES.