

**A RELIABLE HPLC-PDA METHOD FOR THE DETERMINATION OF
MELOXICAM IN RAT PLASMA:
DEVELOPMENT, VALIDATION, AND BIODISTRIBUTION APPLICATION**

Joane Guterres Ferreira¹; Camila de Oliveira Pacheco^{1,2}; Vitória dos Santos Gallarreta¹; Flavia Elizabete Guerra Teixeira^{1,2}; Tamara Ramos Maciel^{1,2}; Ana Pozzato Funghetto-Ribeiro^{1,3}; Sandra Elisa Haas^{1,2,3}

¹ Pharmacology and Pharmacometrics Laboratory, LABFAR, Federal University of Pampa (Unipampa), Uruguaiana, 97500-970, Rio Grande do Sul.

² Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa (Unipampa), Uruguaiana, 97500-970, Rio Grande do Sul.

³ Postgraduate Program in Biochemistry, Federal University of Pampa (Unipampa), Uruguaiana, 97500-970, Rio Grande do Sul.

ABSTRACT

INTRODUCTION: Non-steroidal anti-inflammatory drugs (NSAIDs) have been investigated for potential roles in modulating neurotoxic pathways, such as β -amyloid peptide aggregation implicated in Alzheimer's disease. Meloxicam (MLX), a member of the enolic acid subclass of NSAIDs, is commonly prescribed for conditions like rheumatoid arthritis and osteoarthritis but its use is limited by gastric adverse effects.

OBJECTIVE: To support toxicological assessments and characterize potential sex-based differences in drug metabolism and systemic exposure, a high-performance liquid chromatography with photodiode array detection (HPLC-PDA) method was developed and validated to quantify MLX in rat plasma. **MATERIALS AND METHODS:** For the MLX plasma extraction, liquid-liquid partitioning was employed. A Waters C18 column (150 mm \times 4.6 mm \times 5 μ m) with a mobile phase of acetonitrile and water containing 0.05% triethylamine, pH adjusted to 3.0 with phosphoric acid, was used. The injection volume was 5 μ L, with a 1.0 mL/min flow rate. Detection was performed at a wavelength of 365 nm, with a total running time of 9 minutes. The bioanalytical method was validated according to established international and national guidelines. **RESULTS:** The bioanalytical method showed linearity over a concentration range of 1–50 μ g/mL ($R^2 > 0.9992$), with inter-day accuracy between 89.86% and 102.15%, and precision (RSD) from 0.30% to 5.92%. Sample stability was confirmed under various storage conditions,

making the method suitable for repeat analysis in long-term evaluations. CONCLUSION: The validated HPLC-PDA method is well-suited for pharmacokinetic and biodistribution studies of MLX, facilitating the assessment of sex-specific differences in toxicological conditions that may influence safety outcomes.

Keywords: Bioanalytical method; HPLC; Validation

SOURCE OF FUNDING

This work was supported by the Coordination for the Improvement of Higher Education Personnel, Brazil (CAPES); the Rio Grande do Sul Science Foundation (FAPERGS); the National Council of Technological and Scientific Development (CNPq); and UNIPAMPA.