

Development, characterization and evaluation of the biocompatibility, bioactivity and biodegradability of a polymeric nanocomposite for bone regeneration

Daniel Moro Druzian¹; Giovana Kolinski Cosettin Bonazza²; Yolice Patricia Moreno Ruiz³; Giovanni Pavoski⁴; Denise Crocce Romero Espinosa⁴; Alencar Kolinski Machado²; William Leonardo da Silva¹

¹Applied Nanomaterials Research Group (GPNAp)

Franciscan University (UFN), Santa Maria-RS

²Cell Culture Laboratory and Bioactive Effects (LABCULTBIO) Franciscan University (UFN), Santa Maria-RS

³Department of Fundamental Chemistry (DQF)

Federal University of Pernambuco (UFPE), Pernambuco-PE

⁴Recycling, Waste Treatment and Extraction Laboratory (LAREX)

University of São Paulo (USP), São Paulo-SP

E-mail:daniel.druzian@ufn.edu.br

INTRODUCTION: Millions of people suffer from degenerative problems related to fractures in bone tissues, usually due to a lack of calcium or phosphorus. The main causes are traffic accidents and advanced age (Cope *et al.*, 2019). In this sense, scaffolds are promising 3D porous structural materials for the regeneration and repair of different functional tissues (Hosseinpour *et al.*, 2019). The study and use of nanotechnology in biomaterials seek to increase their properties, making them attractive for applications in various processes involving bone tissue regeneration, for example, magnesium oxide nanoparticles (nMgO), nanobioglass (nBV), nanobioglass doped with magnesium nanoparticles (nBV-nMgO), nanostructured montmorillonite (nMMT) and montmorillonite nanoreinforcement containing nanobioglass doped with magnesium nanoparticles (nMMT/nBV-nMgO) (Druzian *et al.*, 2024). **OBJECTIVE:** In this context, the present work aims to develop and characterize a polymeric nanocomposite (HEC@nMMT/nBV-nMgO), with hydroxyethylcellulose (HEC) as the matrix and nMMT/nBV-nMgO as the reinforcement, for application in bone regeneration. **MATERIALS AND METHODS:** HEC@nMMT/nBV-nMgO was synthesized and characterized by the *in situ* polymerization technique combined with the experimental design, clustering and correlation, where the biological properties, for example, *in vitro* safety profile using OFCOL II cells, bioactivity, and biodegradability were evaluated.

RESULTS: K-means clustering indicated 3 centroid groups with high similarity (> 78%) between [HEC] and [nMMT/nBV-nMgO]. The ideal condition was [HEC] of 1.50 w w⁻¹, and [nMMT/nBV-nMgO] of 0.12 w w⁻¹. HEC@nMMT/nBV-nMgO presented crystalline phases (Muscovite, Low Quartz, and Phosphorus Pentoxide), and textural properties of $S_{BET} = 0.33 \text{ m}^2 \text{ g}^{-1}$, $V_p = 0.002 \text{ cm}^3 \text{ g}^{-1}$ and $D_p = 31.6 \text{ nm}$. Cellular assays demonstrated that HEC@nMMT/nBV-nMgO ensured cellular protection after 24 hours (84.8 to 72.1%) and increased cellular protection after 72 hours (0.1% to 170.3%), being considered non-cytotoxic (<70%) compared to the negative control. HEC@nMMT/nBV-nMgO showed weight loss of approximately 65.7% after 56 days due to Mg⁺² and K⁺ ions masking the partially hydrophobic effect of HEC.

CONCLUSION: Therefore, it was possible to synthesize a polymeric nanocomposite with possible properties suitable for use in the area of bone regeneration.

Acknowledgments:

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

References:

COPE, P.J. *et al.* Models of osteoarthritis: the good, the bad and the promising. **Osteoarthritis Cartilage**, v. 27, p. 230-239, 2019.

DRUZIAN, D.M. *et al.* Fabrication and Properties of the Montmorillonite/Nanobioglass Hybrid Reinforcement from Agroindustrial Waste for Bone Regeneration. **ACS Applied Materials & Interfaces**, v. 16, p. 19391-19410, 2024.

HOSSEINPOUR, S. *et al.* Molecular impacts of photobiomodulation on bone regeneration: a systematic review. **Progress in Biophysics and Molecular Biology**, v. 149, p. 147-159, 2019.