

ACUTE PERFLUOROOCTANE SULFONIC ACID (PFOS) EXPOSURE MODULATES BEHAVIORAL TRENDS AND BRAIN MITOCHONDRIAL FUNCTION IN ADULT ZEBRAFISH

Talise Ellwanger Müller (1); Gabriel Teixeira de Macedo (1); Mariana Torri Claro (1); Sabrina Antunes Ferreira (1); Julia Sepel Loreto (1); Babajide Oluwaseun Ajayi (2); Alessandro de Souza Prestes (1); Isaac Adegboyega Adedara (1); Ketelen Silveira de Souza (1); Matheus Mülling dos Santos (1); Nilda de Vargas Barbosa (1)

(1) Universidade Federal de Santa Maria, Santa Maria, RS

(2) Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

INTRODUCTION: Perfluorooctane sulfonic acid (PFOS) is a persistent environmental contaminant widely detected in aquatic ecosystems. Although chronic exposure has been associated with neurotoxicity, the immediate effects of acute PFOS exposure on behavior and mitochondrial function remain underexplored. **OBJECTIVES:** This study aimed to investigate behavioral outcomes and brain mitochondrial responses following acute PFOS exposure in adult zebrafish (*Danio rerio*). **MATERIALS AND METHODS:** Adult zebrafish (WT, 3–4 months old, 50:50 sex ratio) were acutely exposed to 0.1, 1, or 10 μ M PFOS for 24 hours. Behavioral assays included the novel tank diving test, social preference test, and mirror-induced aggression test. High-resolution respirometry was conducted to assess acute changes in brain mitochondrial respiration and bioenergetic parameters. **RESULTS AND CONCLUSION:** Acute PFOS exposure did not cause statistically significant behavioral changes, but notable trends were observed. Treated fish exhibited reduced top transitions and increased avoidance-like behaviors in the novel tank and aggression tests, alongside decreased social exploration. These alterations suggest a potential shift toward reduced exploratory drive and social withdrawal. Mitochondrial assessments revealed significant decreases in routine respiration and increases in residual oxygen consumption (ROX) at 1 μ M PFOS, indicating potential oxidative stress. Complex I-linked OXPHOS capacity was significantly elevated at 1 and 10 μ M, while bioenergetic efficiency increased significantly in both groups, indicating a compensatory effect to the acute exposure. These findings suggest that even short-term PFOS exposure can induce measurable mitochondrial adaptations, potentially related to elevated reactive oxygen species and early neurotoxic responses.

KEYWORDS: PFAS; zebrafish; environmental toxicology; high-resolution respirometry; animal behavior