On the Parameters Investigation of a Non-Intrusive Multiscale Framework for Structural Analysis

Autores

  • Neimar A. da Silveira Filho Dept. of Structural Engineering, Federal University of Minas Gerais
  • Felício B. Barros Dept. of Structural Engineering, Federal University of Minas Gerais

Palavras-chave:

Generalized Finite Element Method, Global-Local Analysis, Non-intrusive coupling, Multiscale anal- ysis

Resumo

IGL-GFEMgl is a multiscale framework proposed by H. Li, P. O’Hara, and C. A. Duarte in 2021 that combines the IGL strategy with the GFEMgl. In the Iterative Global-Local method (IGL), two different meshes are adopted. The global mesh is used to describe the global behavior of the structure. Local features are represented in the local mesh. The solution of the two meshes is coupled through an non-intrusive iterative algorithm that exchanges displacements and enforces the equilibrium between them. The GFEMgl considers two scales of representations, but the coupling is provided by the GFEM’s enrichment strategy. Finally, in the IGL-GFEMgl
framework, a third problem is defined, named mesoscale. The mesoscale works as a bridge between the two methods (IGL and IGL-GFEMgl), allowing a non-intrusive coupling of the global problem FEM solution and the meso-local scale solution provided by the GFEMgl. In this work, the commercial software Abaqus solves the global problem and is coupled with an in-house computational platform where GFEMgl is already implemented. A thorough investigation is performed over some IGL-GFEMgl parameters, such as the size of the mesoscale and the use of acceleration techniques to improve the convergence of the method.

Downloads

Publicado

2024-04-29

Edição

Seção

M14 Developments and Applications of Special Enrichment Methods and Innovative Discretization Techniques - Meshfree, Pou Methods and GFEM/XFEM, Isogeometric Analysis